Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 22

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{rrr}{3} & {2} & {2} \\ {1} & {4} & {1} \\ {-2} & {-4} & {-1}\end{array}\right) $$

Problem 22

Verify that the given vector satisfies the given differential equation. \(\mathbf{x}^{\prime}=\left(\begin{array}{ll}{3} & {-2} \\ {2} & {-2}\end{array}\right) \mathbf{x}, \quad \mathbf{x}=\left(\begin{array}{l}{4} \\\ {2}\end{array}\right) e^{2 t}\)

Problem 22

Consider two interconnected tanks similar to those in Figure \(7.1 .6 .\) Tank 1 initially contains 60 gal of water and \(Q_{1}^{0}\) oz of salt, while Tank 2 initially contains 100 gal of water and \(Q_{2}^{0}\) oz of salt. Water containing \(q_{1}\) oz/gal of salt flows into Tank 1 at a rate of 3 gal/min. The mixture in Tank 1 flows out at a rate of 4 gal/min, of which half flows into Tank 2 while the remainder leaves the system. Water containing \(q_{2}\) oz/gal of salt also flows into Tank 2 from the outside at the rate of 1 gal/min. The mixture in Tank 2 leaves the tank at a rate of 3 gal/min, of which 1 gal/min flows back into Tank \(1,\) while the rest leaves the system. (a) Draw a diagram that depicts the flow process described above. Let \(Q_{1}(t)\) and \(Q_{2}(t),\) respectively, be the amount of salt in each tank at time \(t .\) Write down differential equations and initial conditions for \(Q_{1}\) and \(Q_{2}\) that model the flow process. (b) Find the equilibrium values \(Q_{1}^{E}\) and \(Q_{2}^{E}\) in terms of the concentrations \(q_{1}\) and \(q_{2} .\) (c) Is it possible (by adjusting \(\left.q_{1} \text { and } q_{2}\right)\) to obtain \(Q_{1}^{E}=60\) and \(Q_{2}^{E}=50\) as an equilibrium state? (d) Describe which equilibrium states are possible for this system for various values of \(q_{1}\) and \(q_{2} .\)

Problem 23

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{ccc}{11 / 9} & {-2 / 9} & {8 / 9} \\ {-2 / 9} & {2 / 9} & {10 / 9} \\ {8 / 9} & {10 / 9} & {5 / 9}\end{array}\right) $$

Problem 23

Solve the given system of equations in each of Problems 20 through 23. Assume that \(t>0 .\) $$ r_{1}=-1, \quad \xi^{(1)}=\left(\begin{array}{c}{-1} \\\ {2}\end{array}\right): \quad r_{2}=-2, \quad \xi^{(2)}=\left(\begin{array}{c}{1} \\ {2}\end{array}\right) $$

Problem 23

In each of Problems 23 and 24 ; (a) Find the eigenvalues of the given system. (b) Choose an initial point (other than the origin) and draw the corresponding trajectory in the \(x_{1} x_{2}\) -plane. Also draw the trajectories in the \(x_{1} x_{1}-\) and \(x_{2} x_{3}-\) planes. (c) For the initial point in part (b) draw the corresponding trajectory in \(x_{1} x_{2} x_{3}\) -space. $$ \mathbf{x}^{\prime}=\left(\begin{array}{ccc}{-\frac{1}{4}} & {1} & {0} \\\ {-1} & {-\frac{1}{4}} & {0} \\ {0} & {0} & {-\frac{1}{4}}\end{array}\right) \mathbf{x} $$

Problem 23

\(\mathbf{x}^{\prime}=\left(\begin{array}{cc}{2} & {-1} \\ {3} & {-2}\end{array}\right) \mathbf{x}+\left(\begin{array}{r}{1} \\\ {-1}\end{array}\right) e^{t}, \quad \mathbf{x}=\left(\begin{array}{l}{1} \\\ {0}\end{array}\right) e^{t}+2\left(\begin{array}{l}{1} \\\ {1}\end{array}\right) t e^{t}\)

Problem 24

(a) Find the eigenvalues of the given system. (b) Choose an initial point (other than the origin) and draw the corresponding trajectory in the \(x_{1} x_{2}\) -plane. Also draw the trajectories in the \(x_{1} x_{1}-\) and \(x_{2} x_{3}-\) planes. (c) For the initial point in part (b) draw the corresponding trajectory in \(x_{1} x_{2} x_{3}\) -space. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rrr}{-\frac{1}{4}} & {1} & {0} \\\ {-1} & {-\frac{1}{4}} & {0} \\ {0} & {0} & {\frac{1}{10}}\end{array}\right) \mathbf{x} $$

Problem 24

Verify that the given vector satisfies the given differential equation. \(\mathbf{x}^{\prime}=\left(\begin{array}{rrr}{1} & {1} & {1} \\ {2} & {1} & {-1} \\ {0} & {-1} & {1}\end{array}\right) \mathbf{x}, \quad \mathbf{x}=\left(\begin{array}{r}{6} \\ {-8} \\ {-4}\end{array}\right) e^{-t}+2\left(\begin{array}{r}{0} \\ {1} \\ {-1}\end{array}\right) e^{2 t}\)

Problem 24

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{lll}{3} & {2} & {4} \\ {2} & {0} & {2} \\ {4} & {2} & {3}\end{array}\right) $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks