Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 28

Consider a \(2 \times 2\) system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). If we assume that \(r_{1} \neq r_{2}\), the general solution is \(\mathbf{x}=c_{1} \xi^{(1)} e^{t_{1}^{\prime}}+c_{2} \xi^{(2)} e^{\prime 2},\) provided that \(\xi^{(1)}\) and \(\xi^{(2)}\) are linearly independent In this problem we establish the linear independence of \(\xi^{(1)}\) and \(\xi^{(2)}\) by assuming that they are linearly dependent, and then showing that this leads to a contradiction. $$ \begin{array}{l}{\text { (a) Note that } \xi \text { (i) satisfies the matrix equation }\left(\mathbf{A}-r_{1} \mathbf{I}\right) \xi^{(1)}=\mathbf{0} ; \text { similarly, note that }} \\ {\left(\mathbf{A}-r_{2} \mathbf{I}\right) \xi^{(2)}=\mathbf{0}} \\ {\text { (b) Show that }\left(\mathbf{A}-r_{2} \mathbf{I}\right) \xi^{(1)}=\left(r_{1}-r_{2}\right) \mathbf{\xi}^{(1)}} \\\ {\text { (c) Suppose that } \xi^{(1)} \text { and } \xi^{(2)} \text { are linearly dependent. Then } c_{1} \xi^{(1)}+c_{2} \xi^{(2)}=\mathbf{0} \text { and at least }}\end{array} $$ $$ \begin{array}{l}{\text { one of } c_{1} \text { and } c_{2} \text { is not zero; suppose that } c_{1} \neq 0 . \text { Show that }\left(\mathbf{A}-r_{2} \mathbf{I}\right)\left(c_{1} \boldsymbol{\xi}^{(1)}+c_{2} \boldsymbol{\xi}^{(2)}\right)=\mathbf{0}} \\ {\text { and also show that }\left(\mathbf{A}-r_{2} \mathbf{I}\right)\left(c_{1} \boldsymbol{\xi}^{(1)}+c_{2} \boldsymbol{\xi}^{(2)}\right)=c_{1}\left(r_{1}-r_{2}\right) \boldsymbol{\xi}^{(1)} \text { . Hence } c_{1}=0, \text { which is }} \\\ {\text { a contradiction. Therefore } \xi^{(1)} \text { and } \boldsymbol{\xi}^{(2)} \text { are linearly independent. }}\end{array} $$ $$ \begin{array}{l}{\text { (d) Modify the argument of part (c) in case } c_{1} \text { is zero but } c_{2} \text { is not. }} \\ {\text { (e) Carry out a similar argument for the case in which the order } n \text { is equal to } 3 \text { ; note that }} \\ {\text { the procedure can be extended to cover an arbitrary value of } n .}\end{array} $$

Problem 28

Deal with the problem of solving \(\mathbf{A x}=\mathbf{b}\) when \(\operatorname{det} \mathbf{A}=0\) Suppose that det \(\mathbf{\Lambda}=0,\) and that \(\mathbf{x}=\mathbf{x}^{(0)}\) is a solution of \(\mathbf{A} \mathbf{x}=\mathbf{b} .\) Show that if \(\xi\) is a solution of \(\mathbf{A} \xi=\mathbf{0}\) and \(\alpha\) is any constant, then \(\mathbf{x}=\mathbf{x}^{(0)}+\alpha \xi\) is also a solution of \(\mathbf{A} \mathbf{x}=\mathbf{b} .\)

Problem 28

A mass \(m\) on a spring with constant \(k\) satisfies the differential equation (see Section 3.8 ) \(m u^{\prime \prime}+k u=0\) where \(u(t)\) is the displacement at time \(t\) of the mass from its equilibrium position. (a) Let \(x_{1}=u\) and \(x_{2}=u^{\prime}\); show that the resulting system is \(\mathbf{x}^{\prime}=\left(\begin{array}{rr}{0} & {1} \\ {-k / m} & {0}\end{array}\right) \mathbf{x}\) (b) Find the eigenvalues of the matrix for the system in part (a). (c) Sketch several trajectories of the system. Choose one of your trajectories and sketch the corresponding graphs of \(x_{1}\) versus \(t\) and of \(x_{2}\) versus \(t\), Sketch both graphs on one set of axes. (d) What is the relation between the eigenvalues of the coefficient matrix and the natural frequency of the spring-mass system?

Problem 29

Deal with the problem of solving \(\mathbf{A x}=\mathbf{b}\) when \(\operatorname{det} \mathbf{A}=0\) Suppose that det \(\mathbf{A}=0\) and that \(y\) is a solution of \(\mathbf{A}^{*} \mathbf{y}=\mathbf{0} .\) Show that if \((\mathbf{b}, \mathbf{y})=0\) for every such \(\mathbf{y},\) then \(\mathbf{A} \mathbf{x}=\mathbf{b}\) has solutions. Note that the converse of Problem \(27 ;\) the form of the solution is given by Problem \(28 .\)

Problem 29

Consider the equation $$ a y^{\prime \prime}+b y^{\prime}+c y=0 $$ $$ \begin{array}{l}{\text { where } a, b, \text { and } c \text { are constants. In Chapter } 3 \text { it was shown that the general solution depended }} \\\ {\text { on the roots of the characteristic equation }}\end{array} $$ $$ a r^{2}+b r+c=0 $$ $$ \begin{array}{l}{\text { (a) Transform Eq. (i) into a system of first order equations by letting } x_{1}=y, x_{2}=y^{\prime} . \text { Find }} \\ {\text { the system of equations } x^{\prime}=A x \text { satisfied by } x=\left(\begin{array}{l}{x_{1}} \\ {x_{2}} \\ {x_{2}}\end{array}\right)} \\\ {\text { (b) Find the equation that determines the eigenvalues of the coefficient matrix } \mathbf{A} \text { in part (a). }} \\ {\text { Note that this equation is just the characteristic equation (ii) of Eq. (i). }}\end{array} $$

Problem 30

Prove that \(\lambda=0\) is an eigenvalue of \(\mathbf{A}\) if and only if \(\mathbf{A}\) is singular.

Problem 30

The two-tank system of Problem 21 in Section 7.1 leads to the initial value problem $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{-\frac{1}{10}} & {\frac{3}{40}} \\\ {\frac{1}{10}} & {-\frac{1}{5}}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{c}{-17} \\ {-21}\end{array}\right) $$ $$ \begin{array}{l}{\text { where } x_{1} \text { and } x_{2} \text { are the deviations of the salt levels } Q_{1} \text { and } Q_{2} \text { from their respective }} \\ {\text { equilitia. }} \\ {\text { (a) Find the solution of the given initial value problem. }} \\ {\text { (b) Plot } x \text { versus } t \text { and } x_{2} \text { versus on the same set of of thes } 0.5 \text { for all } t \geq T \text { . }} \\ {\text { (c) Find the time } T \text { such that }\left|x_{1}(t)\right| \leq 0.5 \text { and }\left|x_{2}(t)\right| \leq 0.5 \text { for all } t \geq T}\end{array} $$

Problem 31

Consider the system $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{-1} & {-1} \\ {-\alpha} & {-1}\end{array}\right) \mathbf{x} $$ $$ \begin{array}{l}{\text { (a) Solve the system for } \alpha=0.5 \text { . What are the eigennalues of the coefficient mattix? }} \\ {\text { Classifith the equilitrium point a the natare the cigemalues of the coefficient matrix? Classify }} \\ {\text { the equilithessm for } \alpha \text { . What as the cigemalluce of the coefficient matrix Classify }} \\ {\text { the equilibrium poin at the oigin as to the styse. ematitue different types of behwior. }} \\\ {\text { (c) the parts (a) and (b) solutions of thesystem exhibit two quite different ypes of behwior. }}\end{array} $$ $$ \begin{array}{l}{\text { Find the eigenvalues of the coefficient matrix in terms of } \alpha \text { and determine the value of } \alpha} \\ {\text { between } 0.5 \text { and } 2 \text { where the transition from one type of behavior to the other occurs. This }} \\ {\text { critical value of } \alpha \text { is called a bifurcation point. }}\end{array} $$ $$ \begin{array}{l}{\text { Electric Circuits. Problems } 32 \text { and } 33 \text { are concerned with the clectric circuit described by the }} \\ {\text { system of differential equations in Problem } 20 \text { of Section } 7.1 \text { : }}\end{array} $$ $$ \frac{d}{d t}\left(\begin{array}{l}{l} \\\ {V}\end{array}\right)=\left(\begin{array}{cc}{-\frac{R_{1}}{L}} & {-\frac{1}{L}} \\ {\frac{1}{C}} & {-\frac{1}{C R_{2}}}\end{array}\right)\left(\begin{array}{l}{I} \\ {V}\end{array}\right) $$

Problem 31

Prove that if \(\mathbf{A}\) is Hermitian, then \((\mathbf{A} \mathbf{x}, \mathbf{y})=(\mathbf{x}, \mathbf{A} \mathbf{y}),\) where \(\mathbf{x}\) and \(\mathbf{y}\) are any vectors.

Problem 32

In this problem we show that the eigenvalues of a Hermitian matrix \(\Lambda\) are real. Let \(x\) be an eigenvector corresponding to the eigenvalue \(\lambda\). (a) Show that \((A x, x)=(x, A x)\). Hint: See Problem 31 . (b) Show that \(\lambda(x, x)=\lambda(x, x)\), Hint: Recall that \(A x=\lambda x\). (c) Show that \(\lambda=\lambda\); that is, the cigenvalue \(\lambda\) is real.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks