Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 19

The system \(\left.t \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x} \text { is analogous to the second order Euler equation (Section } 5.5\right) .\) Assum- ing that \(\mathbf{x}=\xi t^{\prime},\) where \(\xi\) is a constant vector, show that \(\xi\) and \(r\) must satisfy \((\mathbf{A} \mathbf{I}) \boldsymbol{\xi}=\mathbf{0}\) in order to obtain nontrivial solutions of the given differential equation.

Problem 19

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{cc}{1} & {\sqrt{3}} \\ {\sqrt{3}} & {-1}\end{array}\right) $$

Problem 19

The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{\alpha} & {10} \\ {-1} & {-4}\end{array}\right) \mathbf{x} $$

Problem 20

Prove that if there are two matrices \(\mathbf{B}\) and \(\mathbf{C}\) such that \(\mathbf{A B}=\mathbf{I}\) and \(\mathbf{A C}=\mathbf{I},\) then \(\mathbf{B}=\mathbf{C} .\) This shows that a matrix A can have only one inverse.

Problem 20

The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ x^{\prime}=\left(\begin{array}{cc}{4} & {\alpha} \\ {8} & {-6}\end{array}\right) \mathbf{x} $$

Problem 20

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{cc}{-3} & {3 / 4} \\ {-5} & {1}\end{array}\right) $$

Problem 21

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{ccc}{1} & {0} & {0} \\ {2} & {1} & {-2} \\ {3} & {2} & {1}\end{array}\right) $$

Problem 21

If \(\mathbf{A}(t)=\left(\begin{array}{ccc}{e^{t}} & {2 e^{-t}} & {e^{2 t}} \\\ {2 e^{t}} & {e^{-t}} & {-e^{2 t}} \\ {-e^{t}} & {3 e^{-t}} & {2 e^{2 t}}\end{array}\right)\) and \(\mathbf{B}(t)=\left(\begin{array}{ccc}{2 e^{t}} & {e^{-t}} & {3 e^{2 t}} \\ {-e^{t}} & {2 e^{-t}} & {e^{2 t}} \\ {3 e^{t}} & {-e^{-t}} & {-e^{2 t}}\end{array}\right),\) find (a) \(\mathbf{A}+3 \mathbf{B}\) (b) \(\mathrm{AB}\) (c) \(d \mathbf{A} / d t\) (d) \(\int_{0}^{1} \mathbf{A}(t) d t\)

Problem 21

Solve the given system of equations in each of Problems 20 through 23. Assume that \(t>0 .\) $$ t \mathbf{x}^{\prime}=\left(\begin{array}{rr}{5} & {-1} \\ {3} & {1}\end{array}\right) \mathbf{x} $$

Problem 21

Let $$ \mathbf{J}=\left(\begin{array}{ccc}{\lambda} & {1} & {0} \\ {0} & {\lambda} & {1} \\ {0} & {0} & {\lambda}\end{array}\right) $$ where \(\lambda\) is an arbitrary real number. (a) Find \(\mathbf{J}^{2}, \mathbf{J}^{3},\) and \(\mathbf{J}^{4}\). (b) Use an inductive argument to show that $$ \mathbf{J}^{n}=\left(\begin{array}{ccc}{\lambda^{n}} & {n \lambda^{n-1}} & {[n(n-1) / 2] \lambda^{n-2}} \\ {0} & {\lambda^{n}} & {n \lambda^{n-1}} \\\ {0} & {0} & {\lambda^{n}}\end{array}\right) $$ (c) Determine exp(Jt). (d) Observe that if you choose \(\lambda=2\), then the matrix \(\mathbf{J}\) in this problem is the same as the matrix \(\mathbf{J}\) in Problem \(17(f)\). Using the matrix T from Problem \(17(f),\) form the product Texp(Jt) with \(\lambda=2\). Observe that the resulting matrix is the same as the fundamental matrix \(\Psi(t)\) in Problem \(17(e) .\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks