Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 25

\(\mathbf{\Psi}^{\prime}=\left(\begin{array}{rr}{1} & {1} \\ {4} & {-2}\end{array}\right) \mathbf{\Psi}, \quad \mathbf{\Psi}(t)=\left(\begin{array}{cc}{e^{-3 t}} & {e^{2 t}} \\ {-4 e^{-3 t}} & {e^{2 t}}\end{array}\right)\)

Problem 25

Deal with the problem of solving \(\mathbf{A x}=\mathbf{b}\) when \(\operatorname{det} \mathbf{A}=0\) Suppose that, for a given matrix \(\mathbf{A}\), there is a nonzero vector \(\mathbf{x}\) such that \(\mathbf{A x}=\mathbf{0 . ~ S h o w ~}\) that there is also a nonzero vector \(\mathbf{y}\) such that \(\mathbf{A}^{*} \mathbf{y}=\mathbf{0} .\)

Problem 25

In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix \(\mathrm{A}\) are given. Consider the corresponding system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). $$ \begin{array}{l}{\text { (a) Sketch a phase portrait of the system. }} \\\ {\text { (b) Sketch the trajectory passing through the initial point }(2,3) \text { . }} \\ {\text { (c) For the trajectory in part (b) sketch the graphs of } x_{1} \text { versus } t \text { and of } x_{2} \text { versus } t \text { on the }} \\ {\text { same set of axes. }}\end{array} $$ $$ r_{1}=1, \quad \xi^{(1)}=\left(\begin{array}{r}{-1} \\ {2}\end{array}\right) ; \quad r_{2}=-2, \quad \xi^{(2)}=\left(\begin{array}{c}{1} \\\ {2}\end{array}\right) $$

Problem 26

The electric circuit shown in Figure 7.6 .6 is described by the system of differential equations \(\frac{d}{d t}\left(\begin{array}{l}{I} \\\ {V}\end{array}\right)=\left(\begin{array}{cc}{0} & {\frac{1}{L}} \\\ {-\frac{1}{C}} & {-\frac{1}{R C}}\end{array}\right)\left(\begin{array}{l}{I} \\\ {V}\end{array}\right)\) where \(I\) is the current through the inductor and \(V\) is the voltage drop across the capacitor. These differential equations were derived in Problem 18 of Section \(7.1 .\) (a) Show that the eigenvalues of the coefficient matrix are real and different if \(L>4 R^{2} C\); show they are complex conjugates if \(L<4 R^{2} C .\) (b) Suppose that \(R=1\) ohm, \(C=\frac{1}{2}\) farad, and \(L=1\) henry. Find the general solution of the system (i) in this case. (c) Find \(I(t)\) and \(V(t)\) if \(I(0)=2\) amperes and \(V(0)=1\) volt (d) For the circuit of part (b) determine the limiting values of \(I(t)\) and \(V(t)\) as \(t \rightarrow \infty\) Do these limiting values depend on the initial conditions?

Problem 26

Deal with the problem of solving \(\mathbf{A x}=\mathbf{b}\) when \(\operatorname{det} \mathbf{A}=0\) Show that \((\mathbf{A x}, \mathbf{y})=\left(\mathbf{x}, \mathbf{A}^{*} \mathbf{y}\right)\) for any vectors \(\mathbf{x}\) and \(\mathbf{y}\)

Problem 26

verify that the given matrix satisfies the given differential equation. \(\mathbf{\Psi}^{\prime}=\left(\begin{array}{rrr}{1} & {-1} & {4} \\ {3} & {2} & {-1} \\ {2} & {1} & {-1}\end{array}\right) \mathbf{\Psi}, \quad \mathbf{\Psi}(t)=\left(\begin{array}{rrr}{e^{t}} & {e^{-2 t}} & {e^{3 t}} \\\ {-4 e^{t}} & {-e^{-2 t}} & {2 e^{3 t}} \\ {-e^{t}} & {-e^{-2 t}} & {e^{3 t}}\end{array}\right)\)

Problem 26

In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix \(\mathrm{A}\) are given. Consider the corresponding system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). $$ \begin{array}{l}{\text { (a) Sketch a phase portrait of the system. }} \\\ {\text { (b) Sketch the trajectory passing through the initial point }(2,3) \text { . }} \\ {\text { (c) For the trajectory in part (b) sketch the graphs of } x_{1} \text { versus } t \text { and of } x_{2} \text { versus } t \text { on the }} \\ {\text { same set of axes. }}\end{array} $$ $$ r_{1}=-1, \quad \xi^{(0)}=\left(\begin{array}{r}{-1} \\ {2}\end{array}\right) ; \quad r_{2}=2, \quad \xi^{(2)}=\left(\begin{array}{c}{1} \\\ {2}\end{array}\right) $$

Problem 27

In this problem we indicate how to show that \(\mathbf{u}(t)\) and \(\mathbf{v}(t)\), as given by Eqs. (9), are linearly independent. Let \(r_{1}=\lambda+i \mu\) and \(\bar{r}_{1}=\lambda-i \mu\) be a pair of conjugate eigenvalues of the coefficient matrix \(\mathbf{A}\) of \(\mathrm{Fq}(1)\); let \(\xi^{(1)}=\mathbf{a}+i \mathbf{b}\) and \(\bar{\xi}^{(1)}=\mathbf{a}-i \mathbf{b}\) be the corresponding eigenvectors. Recall that it was stated in Section 7.3 that if \(r_{1} \neq \bar{r}_{1},\) then \(\boldsymbol{\xi}^{(1)}\) and \(\bar{\xi}^{(1)}\) are linearly independent. (a) First we show that a and b are linearly independent. Consider the equation \(c_{1} \mathrm{a}+\) \(c_{2} \mathrm{b}=0 .\) Express a and \(\mathrm{b}\) in terms of \(\xi^{(1)}\) and \(\bar{\xi}^{(1)},\) and then show that \(\left(c_{1}-i c_{2}\right) \xi^{(1)}+\) \(\left(c_{1}+i c_{2}\right) \bar{\xi}^{(1)}=0\) (b) Show that \(c_{1}-i c_{2}=0\) and \(c_{1}+i c_{2}=0\) and then that \(c_{1}=0\) and \(c_{2}=0 .\) Consequently, a and b are linearly independent. (c) To show that \(\mathbf{u}(t)\) and \(\mathbf{v}(t)\) are linearly independent consider the equation \(c_{1} \mathbf{u}\left(t_{0}\right)+\) \(c_{2} \mathbf{v}\left(t_{0}\right)=\mathbf{0}\), where \(t_{0}\) is an arbitrary point. Rewrite this equation in terms of a and \(\mathbf{b}\), and then proceed as in part (b) to show that \(c_{1}=0\) and \(c_{2}=0 .\) Hence \(\mathbf{u}(t)\) and \(\mathbf{v}(t)\) are linearly independent at the arbitrary point \(t_{0}\). Therefore they are linearly independent at every point and on every interval.

Problem 27

Deal with the problem of solving \(\mathbf{A x}=\mathbf{b}\) when \(\operatorname{det} \mathbf{A}=0\) Suppose that det \(\mathbf{A}=0\) and that \(\mathbf{A} \mathbf{x}=\mathbf{b}\) has solutions. Show that \((\mathbf{b}, \mathbf{y})=0,\) where \(\mathbf{y}\) is any solution of \(\mathbf{A}^{\star} \mathbf{y}=\mathbf{0} .\) Verify that this statement is true for the set of equations in Example \(2 .\) Hint: Use the result of Problem \(26 .\)

Problem 27

In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix \(\mathrm{A}\) are given. Consider the corresponding system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). $$ \begin{array}{l}{\text { (a) Sketch a phase portrait of the system. }} \\\ {\text { (b) Sketch the trajectory passing through the initial point }(2,3) \text { . }} \\ {\text { (c) For the trajectory in part (b) sketch the graphs of } x_{1} \text { versus } t \text { and of } x_{2} \text { versus } t \text { on the }} \\ {\text { same set of axes. }}\end{array} $$ $$ r_{1}=1, \quad \xi^{(1)}=\left(\begin{array}{l}{1} \\ {2}\end{array}\right) ; \quad r_{2}=2, \quad \xi^{(2)}=\left(\begin{array}{r}{1} \\\ {-2}\end{array}\right) $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks