Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 21

The definitions of an ordinary point and a regular singular point given in the preceding sections apply only if the point \(x_{0}\) is finite. In more advanced work in differential equations it is often necessary to discuss the point at infinity. This is done by making the change of variable \(\xi=1 / x\) and studying the resulting equation at \(\xi=0 .\) Show that for the differential equation \(P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0\) the point at infinity is an ordinary point if $$ \frac{1}{P(1 / \xi)}\left[\frac{2 P(1 / \xi)}{\xi}-\frac{Q(1 / \xi)}{\xi^{2}}\right] \quad \text { and } \quad \frac{R(1 / \xi)}{\xi^{4} P(1 / \xi)} $$ have Taylor series expansions about \(\xi=0 .\) Show also that the point at infinity is a regular singular point if at least one of the above functions does not have a Taylor series expansion, but both \(\frac{\xi}{P(1 / \xi)}\left[\frac{2 P(1 / \xi)}{\xi}-\frac{Q(1 / \xi)}{\xi^{2}}\right] \quad\) and \(\quad \frac{R(1 / \xi)}{\xi^{2} P(1 / \xi)}\) do have such expansions.

Problem 21

Rewrite the given expression as a sum whose generic term involves \(x^{n} .\) $$ \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} $$

Problem 21

First Order Equations. The series methods discussed in this section are directly applicable to the first order linear differential equation \(P(x) y^{\prime}+Q(x) y=0\) at a point \(x_{0}\), if the function \(p=Q / P\) has a Taylor series expansion about that point. Such a point is called an ordinary point, and further, the radius of convergence of the series \(y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\) is at least as large as the radius of convergence of the series for \(Q / P .\) In each of Problems 16 through 21 solve the given differential equation by a series in powers of \(x\) and verify that \(a_{0}\) is arbitrary in each case. Problems 20 and 21 involve nonhomogeneous differential equations to which series methods can be easily extended. Where possible, compare the series solution with the solution obtained by using the methods of Chapter 2 . $$ y^{\prime}+x y=1+x $$

Problem 21

The equation $$y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \quad-\infty

Problem 22

Using the method of reduction of order, show that if \(r_{1}\) is a repeated root of \(r(r-1)+\) \(\alpha r+\beta=0,\) then \(x^{r}_{1}\) and \(x^{r}\) in \(x\) are solutions of \(x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0\) for \(x>0\)

Problem 22

The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) Show that two linearly independent solutions of the Legendre equation for \(|x|<1\) are $$ \begin{aligned} y_{1}(x)=& 1+\sum_{m=1}^{\infty}(-1)^{m} \\ & \times \frac{\alpha(\alpha-2)(\alpha-4) \cdots(\alpha-2 m+2)(\alpha+1)(\alpha+3) \cdots(\alpha+2 m-1)}{(2 m) !} x^{2 m} \\ y_{2}(x)=& x+\sum_{m=1}^{\infty}(-1)^{m} \\ & \times \frac{(\alpha-1)(\alpha-3) \cdots(\alpha-2 m+1)(\alpha+2)(\alpha+4) \cdots(\alpha+2 m)}{(2 m+1) !} x^{2 m+1} \end{aligned} $$

Problem 22

Use the results of Problem 21 to determine whether the point at infinity is an ordinary point, a regular singular point, or an irregular singular point of the given differential equation. \(y^{\prime \prime}+y=0\)

Problem 22

Rewrite the given expression as a sum whose generic term involves \(x^{n} .\) $$ \sum_{n=0}^{\infty} a_{n} x^{n+2} $$

Problem 22

Consider the initial value problem \(y^{\prime}=\sqrt{1-y^{2}}, y(0)=0\) (a) Show that \(y=\sin x\) is the solution of this initial value problem. (b) Look for a solution of the initial value problem in the form of a power series about \(x=0 .\) Find the coefficients up to the term in \(x^{3}\) in this series.

Problem 23

The Euler equation \(x^{2} y^{\prime \prime}+\) \(\alpha x y^{\prime}+\beta y=0\) can be reduced to an equation with constant coefficients by a change of the independent variable. Let \(x=e^{z},\) or \(z=\ln x,\) and consider only the interval \(x>0 .\) (a) Show that $$ \frac{d y}{d x}=\frac{1}{x} \frac{d y}{d z} \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{x^{2}} \frac{d^{2} y}{d z^{2}}-\frac{1}{x^{2}} \frac{d y}{d z} $$ (b) Show that the Euler equation becomes $$ \frac{d^{2} y}{d z^{2}}+(\alpha-1) \frac{d y}{d z}+\beta y=0 $$ Letting \(r_{1}\) and \(r_{2}\) denote the roots of \(r^{2}+(\alpha-1) r+\beta=0\), show that (c) If \(r_{1}\) and \(r_{2}\) are real and different, then $$ y=c_{1} e^{r_{1} z}+c_{2} e^{r_{2} z}=c_{1} x^{r_{1}}+c_{2} x^{r_{2}} $$ (d) If \(r_{1}\) and \(r_{2}\) are real and equal, then $$ y=\left(c_{1}+c_{2} z\right) e^{r_{1} z}=\left(c_{1}+c_{2} \ln x\right) x^{r_{1}} $$ (e) If \(r_{1}\) and \(r_{2}\) are complex conjugates, \(r_{1}=\lambda+i \mu,\) then $$ y=e^{\lambda z}\left[c_{1} \cos (\mu z)+c_{2} \sin (\mu z)\right]=x^{\lambda}\left[c_{1} \cos (\mu \ln x)+c_{2} \sin (\mu \ln x)\right] $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks