Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 23

The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) Show that, if \(\alpha\) is zero or a positive even integer \(2 n,\) the series solution \(y_{1}\) reduces to a polynomial of degree \(2 n\) containing only even powers of \(x\). Find the polynomials corresponding to \(\alpha=0,2,\) and \(4 .\) Show that, if \(\alpha\) is a positive odd integer \(2 n+1,\) the series solution \(y_{2}\) reduces to a polynomial of degree \(2 n+1\) containing only odd powers of \(x .\) Find the polynomials corresponding to \(\alpha=1,3,\) and \(5 .\)

Problem 23

Use the results of Problem 21 to determine whether the point at infinity is an ordinary point, a regular singular point, or an irregular singular point of the given differential equation. \(x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0\)

Problem 23

Rewrite the given expression as a sum whose generic term involves \(x^{n} .\) $$ x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{k=0}^{\infty} a_{k} x^{k} $$

Problem 24

The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) The Legendre polynomial \(P_{n}(x)\) is defined as the polynomial solution of the Legendre equation with \(\alpha=n\) that also satisfies the condition \(P_{n}(1)=1\). (a) Using the results of Problem 23 , find the Legendre polynomials \(P_{0}(x), \ldots . P_{5}(x) .\) (b) Plot the graphs of \(P_{0}(x), \ldots, P_{5}(x)\) for \(-1 \leq x \leq 1 .\) (c) Find the zeros of \(P_{0}(x), \ldots, P_{5}(x)\).

Problem 25

Rewrite the given expression as a sum whose generic term involves \(x^{n} .\) $$ \sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1} $$

Problem 25

Use the results of Problem 21 to determine whether the point at infinity is an ordinary point, a regular singular point, or an irregular singular point of the given differential equation. \(x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0, \quad\) Bessel equation

Problem 25

The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) It can be shown that the general formula for \(P_{n}(x)\) is $$ P_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{\ln / 2-} \frac{(-1)^{k}(2 n-2 k) !}{k !(n-k) !(n-2 k) !} x^{n-2 k} $$ where \([n / 2]\) denotes the greatest integer less than or equal to \(n / 2 .\) By observing the form of \(P_{n}(x)\) for \(n\) even and \(n\) odd, show that \(P_{n}(-1)=(-1)^{n} .\)

Problem 26

Use the results of Problem 21 to determine whether the point at infinity is an ordinary point, a regular singular point, or an irregular singular point of the given differential equation. \(y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \quad\) Hermite equation

Problem 26

The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) The Legendre polynomials play an important role in mathematical physics. For example, in solving Laplace's equation (the potential equation) in spherical coordinates we encounter the equation $$ \frac{d^{2} F(\varphi)}{d \varphi^{2}}+\cot \varphi \frac{d F(\varphi)}{d \varphi}+n(n+1) F(\varphi)=0, \quad 0<\varphi<\pi $$ where \(n\) is a positive integer. Show that the change of variable \(x=\cos \varphi\) leads to the Legendre equation with \(\alpha=n\) for \(y=f(x)=F(\arccos x) .\)

Problem 26

Use the method of Problem 23 to solve the given equation for \(x>0 .\) \(x^{2} y^{\prime \prime}+7 x y^{\prime}+5 y=x\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks