Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 27

Rewrite the given expression as a sum whose generic term involves \(x^{n} .\) $$ x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n} $$

Problem 27

The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) Show that for \(n=0,1,2,3\) the corresponding Legendre polynomial is given by $$ P_{n}(x)=\frac{1}{2^{n} n !} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} $$ This formula, known as Rodrigues' \((1794-1851)\) formula, is true for all positive integers \(n .\)

Problem 27

Use the method of Problem 23 to solve the given equation for \(x>0 .\) \(x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=3 x^{2}+2 \ln x\)

Problem 27

Plot several partial sums in a series solution of the given initial value problem about \(x=0,\) thereby obtaining graphs analogous to those in Figures 5.2 .1 through \(5.2 .4 .\) \(y^{\prime \prime}+x^{2} y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 ; \quad\) see Problem 4

Problem 28

Use the method of Problem 23 to solve the given equation for \(x>0 .\) \(x^{2} y^{\prime \prime}+x y^{\prime}+4 y=\sin (\ln x)\)

Problem 28

Plot several partial sums in a series solution of the given initial value problem about \(x=0,\) thereby obtaining graphs analogous to those in Figures 5.2 .1 through \(5.2 .4 .\) \((1-x) y^{\prime \prime}+x y^{\prime}-2 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1\)

Problem 28

Determine the \(a_{n}\) so that the equation $$ \sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0 $$ is satisfied. Try to identify the function represented by the series \(\sum_{n=0}^{\infty} a_{n} x^{n}\)

Problem 28

The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) Show that the I.egendre equation can also be written as $$ \left[\left(1-x^{2}\right) y^{\prime}\right]=-\alpha(\alpha+1) y $$ Then it follows that \(\left[\left(1-x^{2}\right) P_{n}^{\prime}(x)\right]^{\prime}=-n(n+1) P_{n}(x)\) and \(\left[\left(1-x^{2}\right) P_{m}^{\prime}(x)\right]^{\prime}=\) \(-m(m+1) P_{m}(x) .\) By multiplying the first equation by \(P_{m}(x)\) and the second equation by \(P_{n}(x),\) and then integrating by parts, show that $$ \int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0 \quad \text { if } \quad n \neq m $$ This property of the Legendre polynomials is known as the orthogonality property. If \(m=n,\) it can be shown that the value of the preceding integral is \(2 /(2 n+1) .\)

Problem 30

Show that if \(L[y]=x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y,\) then $$ L\left[(-x)^{r}\right]=(-x)^{r} F(r) $$ for all \(x<0,\) where \(F(r)=r(r-1)+\alpha r+\beta .\) Hence conclude that if \(r_{1} \neq r_{2}\) are roots of \(F(r)=0,\) then linearly independent solutions of \(L[y]=0\) for \(x<0\) are \((-x)^{r_{1}}\) and \((-x)^{r_{2}}\)

Problem 31

Suppose that \(x^{r}_{1}\) and \(x^{r_{2}}\) are solutions of an Euler equation for \(x>0,\) where \(r_{1} \neq r_{2},\) and \(r_{1}\) is an integer. According to Eq. ( 24) the general solution in any interval not containing the origin is \(y=c_{1}|x|^{r_{1}}+c_{2}|x|^{r_{2}} .\) Show that the general solution can also be written as \(y=k_{1} x^{r}_{1}+k_{2}|x|^{r_{2}} .\) Hint: Show by a proper choice of constants that the expressions are identical for \(x>0,\) and by a different choice of constants that they are identical for \(x<0 .\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks