Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 19

Verify the given equation. $$ \sum_{n=0}^{\infty} a_{n}(x-1)^{n+1}=\sum_{n=1}^{\infty} a_{n-1}(x-1)^{n} $$

Problem 19

In several problems in mathematical physics (for example, the Schrödinger equation for a hydrogen atom) it is necessary to study the differential equation $$ x(1-x) y^{\prime \prime}+[\gamma-(1+\alpha+\beta) x] y^{\prime}-\alpha \beta y=0 $$ where \(\alpha, \beta,\) and \(\gamma\) are constants. This equation is known as the hypergeometric equation. (a) Show that \(x=0\) is a regular singular point, and that the roots of the indicial equation are 0 and \(1-\gamma\). (b) Show that \(x=1\) is a regular singular point, and that the roots of the indicial equation are 0 and \(\gamma-\alpha-\beta .\) (c) Assuming that \(1-\gamma\) is not a positive integer, show that in the neighborhood of \(x=0\) one solution of (i) is $$ y_{1}(x)=1+\frac{\alpha \beta}{\gamma \cdot 1 !} x+\frac{\alpha(\alpha+1) \beta(\beta+1)}{\gamma(\gamma+1) 2 !} x^{2}+\cdots $$ What would you expect the radius of convergence of this series to be? (d) Assuming that \(1-\gamma\) is not an integer or zero, show that a second solution for \(0

Problem 19

By making the change of variable \(x-1=t\) and assuming that \(y\) is a power series in \(t\) find two linearly independent series solutions of $$ y^{\prime \prime}+(x-1)^{2} y^{\prime}+\left(x^{2}-1\right) y=0 $$ in powers of \(x-1\). Show that you obtain the same result directly by assuming that \(y\) is a Taylor series in powers of \(x-1\) and also expressing the coefficient \(x^{2}-1\) in powers of \(x-1\).

Problem 20

Show directly, using the ratio test, that the two series solutions of Airy's equation about \(x=0\) converge for all \(x ;\) see Eq. ( 17) of the text.

Problem 20

Consider the differential equation $$ x^{3} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0 $$ where \(\alpha\) and \(\beta\) are real constants and \(\alpha \neq 0\). (a) Show that \(x=0\) is an irregular singular point. (b) By attempting to determine a solution of the form \(\sum_{n=0}^{\infty} a_{n} x^{r+n},\) show that the indicial equation for \(r\) is linear, and consequently there is only one formal solution of the assumed form. (c) Show that if \(\beta / \alpha=-1,0,1,2, \ldots,\) then the formal series solution terminates and therefore is an actual solution. For other values of \(\beta / \alpha\) show that the formal series solution has a zero radius of convergence, and so does not represent an actual solution in any interval.

Problem 20

Find all values of \(\alpha\) for which all solutions of \(x^{2} y^{\prime \prime}+\alpha x y^{\prime}+(5 / 2) y=0\) approach zero as \(x \rightarrow \infty\).

Problem 20

First Order Equations. The series methods discussed in this section are directly applicable to the first order linear differential equation \(P(x) y^{\prime}+Q(x) y=0\) at a point \(x_{0}\), if the function \(p=Q / P\) has a Taylor series expansion about that point. Such a point is called an ordinary point, and further, the radius of convergence of the series \(y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\) is at least as large as the radius of convergence of the series for \(Q / P .\) In each of Problems 16 through 21 solve the given differential equation by a series in powers of \(x\) and verify that \(a_{0}\) is arbitrary in each case. Problems 20 and 21 involve nonhomogeneous differential equations to which series methods can be easily extended. Where possible, compare the series solution with the solution obtained by using the methods of Chapter 2 . $$ y^{\prime}-y=x^{2} $$

Problem 20

Verify the given equation. $$\sum_{k=0}^{\infty} a_{k+1} x^{k}+\sum_{k=0}^{\infty} a_{k} x^{k+1}=a_{1}+\sum_{k=1}^{\infty}\left(a_{k+1}+a_{k-1}\right) x^{k}$$

Problem 21

Consider the Euler equation \(x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0 .\) Find conditions on \(\alpha\) and \(\beta\) so that (a) All solutions approach zero as \(x \rightarrow 0 .\) (b) All solutions are bounded as \(x \rightarrow 0 .\) (c) All solutions approach zero as \(x \rightarrow \infty\). (d) All solutions are bounded as \(x \rightarrow \infty\). (e) All solutions are bounded both as \(x \rightarrow 0\) and as \(x \rightarrow \infty\).

Problem 21

Consider the differential equation $$ y^{\prime \prime}+\frac{\alpha}{x^{s}} y^{\prime}+\frac{\beta}{x^{t}} y=0 $$ where \(\alpha \neq 0\) and \(\beta \neq 0\) are real numbers, and \(s\) and \(t\) are positive integers that for the moment are arbitrary. (a) Show that if \(s>1\) or \(t>2,\) then the point \(x=0\) is an irregular singular point. (b) Try to find a solution of Eq. (i) of the form $$ y=\sum_{n=0}^{\infty} a_{n} x^{r+n}, \quad x>0 $$ Show that if \(s=2\) and \(t=2,\) then there is only one possible value of \(r\) for which there is a formal solution of Eq. (i) of the form (ii). (c) Show that if \(\beta / \alpha=-1,0,1,2, \ldots,\) then the formal solution terminates and therefore is an actual solution. For other values of \(\beta / \alpha\) show that the formal series solution has a zero radius of convergence, and so does not represent an actual solution in any interval.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks