Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 64

Two stars, with masses \({M_1}\) and \({M_2}\), are in circular orbits around their center of mass. The star with mass \({M_1}\) has an orbit of radius \({R_1}\); the star with mass \({M_2}\) has an orbit of radius \({R_2}\). (a) Show that the ratio of the orbital radii of the two stars equals the reciprocal of the ratio of their masses\(-\)that is, \({R_1}\)/\({R_2}\) \(=\) \({M_2}\)/\({M_1}\). (b) Explain why the two stars have the same orbital period, and show that the period \(T\) is given by \(T = 2\pi\)(R1 + R2)\(^{3/2}\)/\(\sqrt{G(M1 + M2)}\). (c) The two stars in a certain binary star system move in circular orbits. The first star, Alpha, has an orbital speed of 36.0 km/s. The second star, Beta, has an orbital speed of 12.0 km/s. The orbital period is 137 d. What are the masses of each of the two stars? (d) One of the best candidates for a black hole is found in the binary system called A0620-0090. The two objects in the binary system are an orange star, V616 Monocerotis, and a compact object believed to be a black hole (see Fig. 13.28). The orbital period of A0620-0090 is 7.75 hours, the mass of V616 Monocerotis is estimated to be 0.67 times the mass of the sun, and the mass of the black hole is estimated to be 3.8 times the mass of the sun. Assuming that the orbits are circular, find the radius of each object's orbit and the orbital speed of each object. Compare these answers to the orbital radius and orbital speed of the earth in its orbit around the sun.

Problem 65

Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.0 \(\times\) 10\(^4\) m/s when at a distance of 2.5 \(\times\) 10\(^{11}\) m from the center of the sun, what is its speed when at a distance of 5.0 \(\times\) 10\(^{10}\) m?

Problem 66

The planet Uranus has a radius of 25,360 km and a surface acceleration due to gravity of 9.0 m/s\(^2\) at its poles. Its moon Miranda (discovered by Kuiper in 1948) is in a circular orbit about Uranus at an altitude of 104,000 km above the planet's surface. Miranda has a mass of 6.6 \(\times\) 10\(^{19}\) kg and a radius of 236 km. (a) Calculate the mass of Uranus from the given data. (b) Calculate the magnitude of Miranda's acceleration due to its orbital motion about Uranus. (c) Calculate the acceleration due to Miranda's gravity at the surface of Miranda. (d) Do the answers to parts (b) and (c) mean that an object released 1 m above Miranda's surface on the side toward Uranus will fall \(up\) relative to Miranda? Explain.

Problem 67

Consider a spacecraft in an elliptical orbit around the earth. At the low point, or perigee, of its orbit, it is 400 km above the earth's surface; at the high point, or apogee, it is 4000 km above the earth's surface. (a) What is the period of the spacecraft's orbit? (b) Using conservation of angular momentum, find the ratio of the spacecraft's speed at perigee to its speed at apogee. (c) Using conservation of energy, find the speed at perigee and the speed at apogee. (d) It is necessary to have the spacecraft escape from the earth completely. If the spacecraft's rockets are fired at perigee, by how much would the speed have to be increased to achieve this? What if the rockets were fired at apogee? Which point in the orbit is more efficient to use?

Problem 68

A rocket with mass 5.00 \(\times\) 10\(^3\) kg is in a circular orbit of radius 7.20 \(\times\) 10\(^6\) m around the earth. The rocket's engines fire for a period of time to increase that radius to 8.80 \(\times\) 10\(^6\) m, with the orbit again circular. (a) What is the change in the rocket's kinetic energy? Does the kinetic energy increase or decrease? (b) What is the change in the rocket's gravitational potential energy? Does the potential energy increase or decrease? (c) How much work is done by the rocket engines in changing the orbital radius?

Problem 70

A satellite with mass 848 kg is in a circular orbit with an orbital speed of 9640 m/s around the earth. What is the new orbital speed after friction from the earth's upper atmosphere has done \(-\)7.50 \(\times\) 10\(^9\) J of work on the satellite? Does the speed increase or decrease?

Problem 71

Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface. Model a spherically symmetric planet, with the same radius as the earth, as having a density that decreases linearly with distance from the center. Let the density be 15.0 \(\times\) 10\(^3\) kg/m\(^3\) at the center and 2.0 \(\times\) 10\(^3\) kg/m\(^3\) at the surface. What is the acceleration due to gravity at the surface of this planet?

Problem 74

A uniform wire with mass \(M\) and length \(L\) is bent into a semicircle. Find the magnitude and direction of the gravitational force this wire exerts on a point with mass \(m\) placed at the center of curvature of the semicircle.

Problem 77

For a spherical planet with mass \(M\), volume \(V\), and radius \(R\), derive an expression for the acceleration due to gravity at the planet's surface, \(g\), in terms of the average density of the planet, \(\rho =\) \(M/V\), and the planet's diameter, \(D = 2R\). The table gives the values of \(D\) and \(g\) for the eight major planets: (a) Treat the planets as spheres. Your equation for \(g\) as a function of \(\rho\) and \(D\) shows that if the average density of the planets is constant, a graph of \(g\) versus \(D\) will be well represented by a straight line. Graph g as a function of \(D\) for the eight major planets. What does the graph tell you about the variation in average density? (b) Calculate the average density for each major planet. List the planets in order of decreasing density, and give the calculated average density of each. (c) The earth is not a uniform sphere and has greater density near its center. It is reasonable to assume this might be true for the other planets. Discuss the effect this nonuniformity has on your analysis. (d) If Saturn had the same average density as the earth, what would be the value of \(g\) at Saturn's surface?

Problem 80

An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black hole at a distance of 120 km from its center. The black hole is 5.00 times the mass of the sun and has a Schwarzschild radius of 15.0 km. The astronaut is positioned inside the spaceship such that one of her 0.030-kg ears is 6.0 cm farther from the black hole than the center of mass of the spacecraft and the other ear is 6.0 cm closer. (a) What is the tension between her ears? Would the astronaut find it difficult to keep from being torn apart by the gravitational forces? (Since her whole body orbits with the same angular velocity, one ear is moving too slowly for the radius of its orbit and the other is moving too fast. Hence her head must exert forces on her ears to keep them in their orbits.) (b) Is the center of gravity of her head at the same point as the center of mass? Explain.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks