Problem 48
At a certain instant, the earth, the moon, and a stationary 1250-kg spacecraft lie at the vertices of an equilateral triangle whose sides are 3.84 \(\times\) 10\(^5\) km in length. (a) Find the magnitude and direction of the net gravitational force exerted on the spacecraft by the earth and moon. State the direction as an angle measured from a line connecting the earth and the spacecraft. In a sketch, show the earth, the moon, the spacecraft, and the force vector. (b) What is the minimum amount of work that you would have to do to move the spacecraft to a point far from the earth and moon? Ignore any gravitational effects due to the other planets or the sun.
Problem 50
Some scientists are eager to send a remote-controlled submarine to Jupiter's moon Europa to search for life in its oceans below an icy crust. Europa's mass has been measured to be 4.80 \(\times\) 10\(^{22}\) kg, its diameter is 3120 km, and it has no appreciable atmosphere. Assume that the layer of ice at the surface is not thick enough to exert substantial force on the water. If the windows of the submarine you are designing each have an area of 625 cm\(^2\) and can stand a maximum inward force of 8750 N per window, what is the greatest depth to which this submarine can safely dive?
Problem 51
What is the escape speed from a 300-km-diameter asteroid with a density of 2500 kg>m\(^3\)?
Problem 52
A landing craft with mass 12,500 kg is in a circular orbit 5.75 \(\times\) 10\(^5\) m above the surface of a planet. The period of the orbit is 5800 s. The astronauts in the lander measure the diameter of the planet to be 9.60 \(\times\) 10\(^6\) m. The lander sets down at the north pole of the planet. What is the weight of an 85.6-kg astronaut as he steps out onto the planet's surface?
Problem 53
Planet X rotates in the same manner as the earth, around an axis through its north and south poles, and is perfectly spherical. An astronaut who weighs 943.0 N on the earth weighs 915.0 N at the north pole of Planet X and only 850.0 N at its equator. The distance from the north pole to the equator is 18,850 km, measured along the surface of Planet X. (a) How long is the day on Planet X? (b) If a 45,000-kg satellite is placed in a circular orbit 2000 km above the surface of Planet X, what will be its orbital period?
Problem 55
An astronaut, whose mission is to go where no one has gone before, lands on a spherical planet in a distant galaxy. As she stands on the surface of the planet, she releases a small rock from rest and finds that it takes the rock 0.480 s to fall 1.90 m. If the radius of the planet is 8.60 \(\times\) 10\(^7\) m, what is the mass of the planet?
Problem 56
Your starship, the \(Aimless\) \(Wanderer\), lands on the mysterious planet Mongo. As chief scientist-engineer, you make the following measurements: A 2.50-kg stone thrown upward from the ground at 12.0 m/s returns to the ground in 4.80 s; the circumference of Mongo at the equator is 2.00 \(\times\) 10\(^5\) km; and there is no appreciable atmosphere on Mongo. The starship commander, Captain Confusion, asks for the following information: (a) What is the mass of Mongo? (b) If the \(Aimless\) \(Wanderer\) goes into a circular orbit 30,000 km above the surface of Mongo, how many hours will it take the ship to complete one orbit?
Problem 57
You are exploring a distant planet. When your spaceship is in a circular orbit at a distance of 630 km above the planet's surface, the ship's orbital speed is 4900 m/s. By observing the planet, you determine its radius to be 4.48 \(\times\) 10\(^6\) m. You then land on the surface and, at a place where the ground is level, launch a small projectile with initial speed 12.6 m/s at an angle of 30.8\(^\circ\) above the horizontal. If resistance due to the planet's atmosphere is negligible, what is the horizontal range of the projectile?
Problem 61
A hammer with mass \(m\) is dropped from rest from a height \(h\) above the earth's surface. This height is not necessarily small compared with the radius \(R_E\) of the earth. Ignoring air resistance, derive an expression for the speed y of the hammer when it reaches the earth's surface. Your expression should involve \(h\), \(R_E\), and \(m_E\) (the earth's mass).
Problem 63
Two identical stars with mass \(M\) orbit around their center of mass. Each orbit is circular and has radius \(R\), so that the two stars are always on opposite sides of the circle. (a) Find the gravitational force of one star on the other. (b) Find the orbital speed of each star and the period of the orbit. (c) How much energy would be required to separate the two stars to infinity?