Problem 15
Calculate the earth's gravity force on a 75-kg astronaut who is repairing the Hubble Space Telescope 600 km above the earth's surface, and then compare this value with his weight at the earth's surface. In view of your result, explain why it is said that astronauts are weightless when they orbit the earth in a satellite such as a space shuttle. Is it because the gravitational pull of the earth is negligibly small?
Problem 16
Jupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 km (or even higher) above the surface. Io has a mass of 8.93 \(\times\) 10\(^{22}\) kg and a radius of 1821 km. For this calculation, ignore any variation in gravity over the 500-km range of the debris. How high would this material go on earth if it were ejected with the same speed as on Io?
Problem 19
A planet orbiting a distant star has radius 3.24 \(\times\) 10\(^6\) m. The escape speed for an object launched from this planet's surface is 7.65 \(\times\) 10\(^3\) m/s. What is the acceleration due to gravity at the surface of the planet?
Problem 21
For a satellite to be in a circular orbit 890 km above the surface of the earth, (a) what orbital speed must it be given, and (b) what is the period of the orbit (in hours)?
Problem 22
On July 15, 2004, NASA launched the \(Aura\) spacecraft to study the earth's climate and atmosphere. This satellite was injected into an orbit 705 km above the earth's surface. Assume a circular orbit. (a) How many hours does it take this satellite to make one orbit? (b) How fast (in km/s) is the \(Aura\) spacecraft moving?
Problem 24
In its orbit each day, the International Space Station makes 15.65 revolutions around the earth. Assuming a circular orbit, how high is this satellite above the surface of the earth?
Problem 25
Deimos, a moon of Mars, is about 12 km in diameter with mass 1.5 \(\times\) 10\(^{15}\) kg. Suppose you are stranded alone on Deimos and want to play a one- person game of baseball. You would be the pitcher, and you would be the batter! (a) With what speed would you have to throw a baseball so that it would go into a circular orbit just above the surface and return to you so you could hit it? Do you think you could actually throw it at this speed? (b) How long (in hours) after throwing the ball should you be ready to hit it? Would this be an action-packed baseball game?
Problem 26
Planet Vulcan. Suppose that a planet were discovered between the sun and Mercury, with a circular orbit of radius equal to \(\frac{2}{3}\) of the average orbit radius of Mercury. What would be the orbital period of such a planet? (Such a planet was once postulated, in part to explain the precession of Mercury's orbit. It was even given the name Vulcan, although we now have no evidence that it actually exists. Mercury's precession has been explained by general relativity.)
Problem 27
The star Rho\(^1\) Cancri is 57 light-years from the earth and has a mass 0.85 times that of our sun. A planet has been detected in a circular orbit around Rho\(^1\) Cancri with an orbital radius equal to 0.11 times the radius of the earth's orbit around the sun. What are (a) the orbital speed and (b) the orbital period of the planet of Rho\(^1\) Cancri?
Problem 28
In March 2006, two small satellites were discovered orbiting Pluto, one at a distance of 48,000 km and the other at 64,000 km. Pluto already was known to have a large satellite Charon, orbiting at 19,600 km with an orbital period of 6.39 days. Assuming that the satellites do not affect each other, find the orbital periods of the two small satellites \(without\) using the mass of Pluto.