Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 4: Quantum Mechanics in Three Dimensions

Q45P

Page 192

What is the probability that an electron in the ground state of hydrogen will be found inside the nucleus?

  1. First calculate the exact answer, assuming the wave function is correct all the way down tor=0. Let b be the radius of the nucleus.
  2. Expand your result as a power series in the small numbera=2bla, and show that the lowest-order term is the cubic:P(4l3)(bla)3. This should be a suitable approximation, provided thatba(which it is).
  3. Alternatively, we might assume thatψ(r)is essentially constant over the (tiny) volume of the nucleus, so thatP(4l3)πb3lψ(0)l2.Check that you get the same answer this way.
  4. Useb10-15manda05×10-10mto get a numerical estimate forP. Roughly speaking, this represents the fraction of its time that the electron spends inside the nucleus:"

Q46P

Page 193

(a) Use the recursion formula (Equation 4.76) to confirm that whenI=n-1 the radial wave function takes the form

Rn(n-1)=Nnrn-1e-r/na and determine the normalization constant by direct integration.

(b) Calculate 200a and <r2> for states of the form ψn(n-1)m·

(c) Show that the "uncertainty" in r(δr) is<r>/2n+1for such states. Note that the fractional spread in decreases, with increasing (in this sense the system "begins to look classical," with identifiable circular "orbits," for large ). Sketch the radial wave functions for several values of, to illustrate this point.

Q47P

Page 193

Coincident spectral lines. 43According to the Rydberg formula (Equation 4.93) the wavelength of a line in the hydrogen spectrum is determined by the principal quantum numbers of the initial and final states. Find two distinct pairs{ni,nf} that yield the same λ. For example,role="math" localid="1656311200820" {6851,6409} and{15283,11687}will do it, but you're not allowed to use those!

Q48P

Page 193

Consider the observablesA=x2andB=Lz .

(a) Construct the uncertainty principle forσAσB

(b) EvaluateσB in the hydrogen stateψn/m .

(c) What can you conclude about<xy>in this state?

Q49P

Page 194

An electron is in the spin state

x=A(1-2i2)

(a) Determine the constant by normalizing x.

(b) If you measured Szon this electron, what values could you get, and what is the probability of each? What is the expectation value of Sz?

(c) If you measured Sxon this electron, what values could you get, and what is the probability of each? What is the expectation value of Sx?

(d) If you measured Syon this electron, what values could you get, and what is the probability of each? What is the expectation value ofSy?

Q4P

Page 139

Show thatΘ=AIn[tan(θ2)]satisfies the θequation (Equation 4.25), for l = m = 0. This is the unacceptable "second solution" -- whats wrong with it?

Q50P

Page 194

Suppose two spin -1/2particles are known to be in the singlet configuration (Equation Let Sa(1)be the component of the spin angular momentum of particle number 1 in the direction defined by the unit vectora^ Similarly, letSb(2) be the component of 2’s angular momentum in the directionb^ Show that

Sa(1)Sb(2)=-24cosθ

where θ is the angle between a^ andb^

Q51P

Page 194

(a) Work out the Clebsch-Gordan coefficients for the case s1=1/2,s2=anything. Hint: You're looking for the coefficients A and Bin

|sm=A|1212|s2(m-12)+B|12(-12)|s2(m+12)

such that|sm is an eigenstate of . Use the method of Equations 4.179 through 4.182. If you can't figure out whatSx(2) (for instance) does to|s2m2 , refer back to Equation 4.136 and the line before Equation 4.147. Answer:

;role="math" localid="1658209512756" A=s2+12±m2s2+1;B=±s2+12±m2s2+1

where, the signs are determined bys=s2±1/2 .

(b) Check this general result against three or four entries in Table 4.8.

Q52P

Page 195

Find the matrix representingSxfor a particle of spin3/2 (using, as

always, the basis of eigenstates ofSz). Solve the characteristic equation to

determine the eigenvalues ofSx.

Q53P

Page 195

Work out the spin matrices for arbitrary spin , generalizing spin (Equations 4.145 and 4.147), spin 1 (Problem 4.31), and spin (Problem 4.52). Answer:

Sz=(s0000s-10000s-200000-s)Sx=2(0bs0000bs0bs-10000bs-10bs-20000bs-200000000b-s+10000b-s+10)Sy=2(0-ibs0000ibs0-ibs-10000-ibs-10-ibs-20000-ibs-200000000-ibs+10000-ibs+10)

where,bj(s+j)(s+1-j)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks