Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 4: Quantum Mechanics in Three Dimensions

Q18P

Page 166

The raising and lowering operators change the value of m by one unit:

L±flm=(Alm)flm+1, (4.120).

Where Almare constant. Question: What is Alm, if the Eigen functions are to be normalized? Hint: First show thatL±is the Hermitian conjugate of L±(Since LxandLyare observables, you may assume they are Hermitian…but prove it if you like); then use Equation 4.112.

Q19P

Page 166

(a) Starting with the canonical commutation relations for position and momentum (Equation 4.10), work out the following commutators:

[LZ,X]=ihy,[LZ,y]=-ihx,[LZ,Z]=0[LZ,px]=ihpy,[LZ,py]=-ihpx,[LZ,pz]=0

(b) Use these results to obtain [LZ,LX]=ihLydirectly from Equation 4.96.

(c) Evaluate the commutators [Lz,r2]and[Lz,p2](where, of course, r2=x2+y2+z2andp2=px2+py2+pz2)

(d) Show that the Hamiltonian H=(p2/2m)+Vcommutes with all three components of L, provided that V depends only on r . (Thus H,L2,andLZand are mutually compatible observables.)

Q1P

Page 133

(a) Work out all of the canonical commutation relations for components of the operator r and p : [x,y],[x,py],[x,px],[py,pz],and so on.

(b) Confirm Ehrenfest’s theorem for 3 dimensions

ddt<r>=1m<p>andddt<p>=<-v>

(Each of these, of course, stand for three equations- one for each component.)

(c) Formulate Heisenberg’s uncertainty principle in three dimensions Answer:

σxσph2;σyσph2;σzσph2

But there is no restriction on, say, σxσpy.

Q21P

Page 170

(a)Derive Equation 4.131 from Equation 4.130. Hint: Use a test function; otherwise you're likely to drop some terms.

(b)Derive Equation 4.132 from Equations 4.129 and 4.131 .Hint : Use Equation 4.112.

Q22P

Page 170

(a) What isL+Y1I? (No calculation allowed!)

(b) Use the result of (a), together with Equation 4.130 and the fact thatLzY1I=hIYII to determineYII(θ,ϕ) , up to a normalization constant.

(c) Determine the normalization constant by direct integration. Compare your final answer to what you got in Problem 4.5.

Q23P

Page 170

In Problem4.3 you showed that Y21(θ,ϕ)=-15/8πsinθcosθeiϕ. Apply the raising operator to find localid="1656065252558" Y22(θ,ϕ). Use Equation 4.121to get the normalization.

Q24P

Page 170

Two particles of mass mare attached to the ends of a massless rigid rod of length a. The system is free to rotate in three dimensions about the center (but the center point itself is fixed).

(a) Show that the allowed energies of this rigid rotor are

En=h2n(n+1)ma2, for n=0,1,2,...

Hint: First express the (classical) energy in terms of the total angular momentum.

(b) What are the normalized Eigen functions for this system? What is the degeneracy of thenthenergy level?

Q25P

Page 172

If the electron were a classical solid sphere, with radius

rc=e24πO0˙mc2

(the so-called classical electron radius, obtained by assuming the electron's mass is attributable to energy stored in its electric field, via the Einstein formula E=mc2), and its angular momentum is (1/2)h then how fast (in m/sm/s) would a point on the "equator" be moving? Does this model make sense? (Actually, the radius of the electron is known experimentally to be much less than5.156×1010m/src, but this only makes matters worse).

Q26P

Page 177

a) Check that the spin matrices (Equations 4.145 and 4.147) obey the fundamental commutation relations for angular momentum, Equation 4.134.

Sz=h2(100-1)(4.145).Sx=h2(0110),sy=h2(0-ii0)(4.147).[Sx,Sy]=ihSz,[Sy,Sz]=ihSx,[Sz,Sx]=ihSy(4.134).(b)ShowthatthePaulispinmatrices(Equation4.148)satisfytheproductruleσx(0110),σy(0-ii0),σz(100-1)(4.148).σjσk=δjk+io'IjklσI,(4.153).

Wheretheindicesstandforx,y,orz,ando'jklistheLevi-Civitasymbol:+1ifjkl=123,231,or2=312;-1ifjkl=132,213,or321;otherwise.

Q27P

Page 177

An electron is in the spin state

χ=A3i4

(a) Determine the normalization constant .

(b) Find the expectation values of Sx,Sy , and Sz.

(c) Find the "uncertainties" ,σSx , σSyandσSz . (Note: These sigmas are standard deviations, not Pauli matrices!)

(d) Confirm that your results are consistent with all three uncertainty principles (Equation 4.100 and its cyclic permutations - only with in place ofL, of course).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks