Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 4: Quantum Mechanics in Three Dimensions

Q37P

Page 189

Determine the commutator of S2withSZ(1)(whereSS(1)+S(2)) Generalize your result to show that

[S2,S1]=2Ih(S1×S2)

Comment: Because Sz(1)does not commute with S2, we cannot hope to find states that are simultaneous eigenvectors of both. In order to form eigenstates ofS2weneed linear combinations of eigenstates ofSz(1). This is precisely what the Clebsch-Gordan coefficients (in Equation 4.185) do for us, On the other hand, it follows by obvious inference from Equation 4.187that the sumrole="math" localid="1655980965321" S(1)+S(2)does commute withdata-custom-editor="chemistry" S2, which is a special case of something we already knew (see Equation 4.103).

Q38P

Page 190

Consider the three-dimensional harmonic oscillator, for which the potential is

V(r)=122r2

(a) Show that separation of variables in cartesian coordinates turns this into three one-dimensional oscillators, and exploit your knowledge of the latter to determine the allowed energies. Answer:

En=(n+3/2)hω

(b) Determine the degeneracyofd(n)ofEn.

Q39P

Page 190

Because the three-dimensional harmonic oscillator potential (Equation 4.188)is spherically symmetric, the Schrödinger equation can be handled by separation of variables in spherical coordinates, as well as cartesian coordinates. Use the power series method to solve the radial equation. Find the recursion formula for the coefficients, and determine the allowed energies. Check your answer against Equation4.189.

Q3P

Page 139

Use equations 4.27 4.28 and 4.32 to construct Y00,Y21Check that they are normalized and orthogonal

Q3 P

Page 135

Use equations 4.27 4.28 and 4.32 to constructy00,y21Check that they are normalized and orthogonal

Q40P

Page 190

(a) Prove the three-dimensional virial theorem

2T=rV

(for stationary states). Hint: Refer to problem 3.31,

(b) Apply the virial theorem to the case of hydrogen, and show that

T=-En;V=2En

(c) Apply the virial theorem to the three-dimensional harmonic oscillator and show that in this case

T=V=En/2

Q41P

Page 191

[Attempt this problem only if you are familiar with vector calculus.] Define the (three-dimensional) probability current by generalization of Problem 1.14:

J=ih2m(ψψ*-ψ*ψ)

(a) Show that satisfies the continuity equation .J=-t|ψ|2which expresses local conservation of probability. It follows (from the divergence theorem) that sJ.da=-ddtv|ψ|2d3rwhere Vis a (fixed) volume and is its boundary surface. In words: The flow of probability out through the surface is equal to the decrease in probability of finding the particle in the volume.

(b) FindJfor hydrogen in the staten=2,l=1,m=1 . Answer:

h64ma5re-r/asinθϕ^

(c) If we interpretmJas the flow of mass, the angular momentum is

L=m(r×J)d3r

Use this to calculate Lzfor the stateψ211, and comment on the result.

Q42P

Page 191

The (time-independent) momentum space wave function in three dimensions is defined by the natural generalization of Equation 3.54:

Φ(p,t)=12πhe-ipx/hψ(x,t)dx(3.54).ϕ(p)1(2πh)3/2e-i(p.r)Ihψ(r)d3r.(4.223).

(a)Find the momentum space wave function for the ground state of hydrogen (Equation 4.80). Hint: Use spherical coordinates, setting the polar axis along the direction of p. Do the θ integral first. Answer:

ψ100(r,θ,ϕ)=1πa3e-r/a(4.80).ϕ(p)=1π(2ah)3/21[1+ap/h2]2.(4.224).

(b) Check that Φ(p)is normalized.

(c) Use Φ(p)to calculate <p2>, in the ground state of hydrogen.

(d) What is the expectation value of the kinetic energy in this state? Express your answer as a multiple of E1, and check that it is consistent with the virial theorem (Equation 4.218).

<T>=-En;<V>=2En(4.218).

Q43P

Page 192

(a) Construct the spatial wave function (ψ)for hydrogen in the state n=3,I=2,m=1.Express your answer as a function of r,θ,ϕ,anda(the Bohr radius) only—no other variables (p,z,etc.) or functions (p,v,etc.), or constants (A,c0,etc.), or derivatives, allowed (π is okay, and e, and 2, etc.).

(b) Check that this wave function is properly normalized, by carrying out the appropriate integrals over, θ,andϕ.

(c) Find the expectation value of rsin this state. For what range of s (positive and negative) is the result finite?

Q44

Page 192

(a) Construct the wave function for hydrogen in the state n=4,I=3,m=3. Express your answer as a function of the spherical coordinates r,θandϕ.

(b) Find the expectation value of role="math" localid="1658391074946" rin this state. (As always, look up any nontrivial integrals.)

(c) If you could somehow measure the observable Lx2+Ly2on an atom in this state, what value (or values) could you get, and what is the probability of each?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks