Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 16

Solve the given initial value problem. Describe the behavior of the solution as \(t \rightarrow \infty\). $$ \mathbf{x}^{\prime}=\left(\begin{array}{cc}{-2} & {1} \\ {-5} & {4}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{l}{1} \\ {3}\end{array}\right) $$

Problem 16

Either compute the inverse of the given matrix, or else show that it is singular. \(\left(\begin{array}{rrr}{1} & {-1} & {-1} \\ {2} & {1} & {0} \\ {3} & {-2} & {1}\end{array}\right)\)

Problem 16

The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{\frac{5}{4}} & {\frac{2}{4}} \\\ {\alpha} & {\frac{5}{4}}\end{array}\right) \mathbf{x} $$

Problem 16

Show that if \(\mathbf{A}\) is a diagonal matrix with diagonal elements \(a_{1}, a_{2}, \ldots, a_{n},\) then \(\exp (\mathbf{A} t)\) is also a diagonal matrix with diagonal elements \(\exp \left(a_{1} t\right), \exp \left(a_{2} t\right), \ldots, \exp \left(a_{n} t\right)\)

Problem 16

Consider again the cliectric circuit in Problem 26 of Scction 7.6 . This circut is described by the system of differential equations $$ \frac{d}{d t}\left(\begin{array}{l}{I} \\\ {V}\end{array}\right)=\left(\begin{array}{cc}{0} & {\frac{1}{L}} \\\ {-\frac{1}{C}} & {-\frac{1}{R C}}\end{array}\right)\left(\begin{array}{l}{I} \\\ {V}\end{array}\right) $$ (a) Show that the eigendlucs are raal and equal if \(L=4 R^{2} C\). (b) Suppose that \(R=1\) ohm, \(C=1\) farad, and \(L=4\) henrys. Suppose also that \(I(0)=1\) ampere and \(V(0)=2\) volts. Find \(I(t)\) and \(V(t) .\)

Problem 16

Let \(\mathbf{x}=\Phi(t)\) be the general solution of \(\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t),\) and let \(\mathbf{x}=\mathbf{v}(t)\) be some particular solution of the same system. By considering the difference \(\boldsymbol{\phi}(t)-\mathbf{v}(t),\) show that \(\Phi(t)=\mathbf{u}(t)+\mathbf{v}(t),\) where \(\mathbf{u}(t)\) is the general solution of the homogeneous system \(\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x} .\)

Problem 16

Let \(x=x_{1}(t), y=y_{1}(t)\) and \(x=x_{2}(t), y=y_{2}(t)\) be any two solutions of the linear nonhomogeneous system $$ \begin{aligned} x^{\prime} &=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \\ y^{\prime} &=p_{21}(t) x+p_{22}(t) y+g_{2}(t) \end{aligned} $$ Show that \(x=x_{1}(t)-x_{2}(t), y=y_{1}(t)-y_{2}(t)\) is a solution of the corresponding homogeneous system.

Problem 17

The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{-1} & {\alpha} \\ {-1} & {-1}\end{array}\right) \mathbf{x} $$

Problem 17

The method of successive approximations (see Section \(2.8)\) can also be applied to systems of equations. For example, consider the initial value problem $$ \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}^{0} $$ where \(\mathbf{A}\) is a constant matrix and \(\mathbf{x}^{0}\) a prescribed vector. (a) Assuming that a solution \(\mathbf{x}=\Phi(t)\) exists, show that it must satisfy the integral equation $$ \Phi(t)=\mathbf{x}^{0}+\int_{0}^{t} \mathbf{A} \phi(s) d s $$ (b) Start with the initial approximation \(\Phi^{(0)}(t)=\mathbf{x}^{0} .\) Substitute this expression for \(\Phi(s)\) in the right side of Eq. (ii) and obtain a new approximation \(\Phi^{(1)}(t) .\) Show that $$ \phi^{(1)}(t)=(1+\mathbf{A} t) \mathbf{x}^{0} $$ (c) Reppeat this process and thereby obtain a sequence of approximations \(\phi^{(0)}, \phi^{(1)}\), \(\phi^{(2)}, \ldots, \phi^{(n)}, \ldots\) Use an inductive argument to show that $$ \phi^{(n)}(t)=\left(1+A t+A^{2} \frac{2}{2 !}+\cdots+A^{x} \frac{r^{2}}{n !}\right) x^{0} $$ (d) Let \(n \rightarrow \infty\) and show that the solution of the initial value problem (i) is $$ \phi(t)=\exp (\mathbf{A} t) \mathbf{x}^{0} $$

Problem 17

Consider the system $$ x^{\prime}=A x=\left(\begin{array}{rrr}{1} & {1} & {1} \\ {2} & {1} & {-1} \\\ {-3} & {2} & {4}\end{array}\right) x $$ (a) Show that \(r=2\) is an eigenvalue of multiplicity 3 of the coefficient matrix \(\mathbf{A}\) and that there is only one corresponding cigenvector, namely, $$ \xi^{(1)}=\left(\begin{array}{r}{0} \\ {1} \\ {-1}\end{array}\right) $$ (b) Using the information in part (a), write down one solution \(\mathbf{x}^{(1)}(t)\) of the system (i). There is no other solution of the purely exponential form \(\mathbf{x}=\xi e^{y t}\). (c) To find a second solution assume that \(\mathbf{x}=\xi t e^{2 t}+\mathbf{\eta} e^{2 t} .\) Show that \(\xi\) and \(\mathbf{\eta}\) satisfy the equations $$ (\mathbf{A}-2 \mathbf{I}) \xi=\mathbf{0}, \quad(\mathbf{A}-2 \mathbf{I}) \mathbf{n}=\mathbf{\xi} $$ since \(\xi\) has already been found in part (a), solve the second equation for \(\eta\). Neglect the multiple of \(\xi^{(1)}\) that appears in \(\eta\), since it leads only to a multiple of the first solution \(\mathbf{x}^{(1)}\). Then write down a second solution \(\mathbf{x}^{(2)}(t)\) of the system (i). (d) To find a third solution assume that \(\mathbf{x}=\xi\left(t^{2} / 2\right) e^{2 t}+\mathbf{\eta} t e^{2 t}+\zeta e^{2 t} .\) Show that \(\xi, \eta,\) and \(\zeta\) satisfy the equations $$ (\mathbf{A}-2 \mathbf{l}) \xi=\mathbf{0}, \quad(\mathbf{\Lambda}-2 \mathbf{I}) \mathbf{\eta}=\mathbf{\xi}, \quad(\mathbf{A}-2 \mathbf{l}) \zeta=\mathbf{\eta} $$ The first two equations are the same as in part (c), so solve the third equation for \(\zeta,\) again neglecting the multiple of \(\xi^{(1)}\) that appears. Then write down a third solution \(\mathbf{x}^{(3)}(t)\) of the system (i). (e) Write down a fundamental matrix \(\boldsymbol{\Psi}(t)\) for the system (i). (f) Form a matrix \(\mathbf{T}\) with the cigenvector \(\xi^{(1)}\) in the first column, and the generalized eigenvectors \(\eta\) and \(\zeta\) in the second and third columns. Then find \(T^{-1}\) and form the product \(\mathbf{J}=\mathbf{T}^{-1} \mathbf{A} \mathbf{T}\). The matrix \(\mathbf{J}\) is the Jordan form of \(\mathbf{A}\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks