Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 14

Show that if \(a_{11}, a_{12}, a_{21},\) and \(a_{22}\) are constants with \(a_{12}\) and \(a_{21}\) noth zero, and if the functions \(g_{1}\) and \(g_{2}\) are differentiable, then the initial value problem $$ \begin{aligned} x_{1}^{\prime}=a_{11} x_{1}+a_{12} x_{2}+g_{1}(t), & x_{1}(0)=x_{1}^{0} \\ x_{2}^{\prime}=a_{21} x_{1}+a_{22} x_{2}+g_{2}(t), & x_{2}(0)=x_{2}^{0} \end{aligned} $$ can be transformed into an initial value problem for a single second order equation. Can the same procedure be carried out if \(a_{11}, \ldots, a_{22}\) are functions of \(t ?\)

Problem 14

Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rrr}{1} & {-1} & {4} \\ {3} & {2} & {-1} \\ {2} & {1} & {-1}\end{array}\right) \mathbf{x} $$

Problem 15

In each of Problems 15 through 18 solve the given initial value problem. Describe the behavior of the solution as \(t \rightarrow \infty\). $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{5} & {-1} \\ {3} & {1}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{r}{2} \\ {-1}\end{array}\right) $$

Problem 15

Show that all solutions of the system $$ x^{\prime}=\left(\begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right) \mathbf{x} $$ approach zero as \(t \rightarrow \infty\) if and only if \(a+d<0\) and \(a d-b c>0 .\) Compare this result with that of Problem 38 in Section \(3.5 .\)

Problem 15

Let \(\Phi(t)\) denote the fundamental matrix satisfying \(\Phi^{\prime}=A \Phi, \Phi(0)=L\) In the text we also denoted this matrix by \(\exp (A t)\), In this problem we show that \(\Phi\) does indeed have the principal algebraic properties associated with the exponential function. (a) Show that \(\Phi(t) \Phi(s)=\Phi(t+s) ;\) that is, \(\exp (\hat{\mathbf{A}} t) \exp (\mathbf{A} s)=\exp [\mathbf{A}(t+s)]\) Hint: Show that if \(s\) is fixed and \(t\) is variable, then both \(\Phi(t) \Phi(s)\) and \(\Phi(t+s)\) satisfy the initial value problem \(\mathbf{Z}^{\prime}=\mathbf{A} \mathbf{Z}, \mathbf{Z}(0)=\mathbf{\Phi}(s)\) (b) Show that \(\Phi(t) \Phi(-t)=\mathbf{I}\); that is, exp(At) \(\exp [\mathbf{A}(-t)]=\mathbf{1}\). Then show that \(\Phi(-t)=\) \(\mathbf{\Phi}^{-1}(t) .\) (c) Show that \(\mathbf{\Phi}(t-s)=\mathbf{\Phi}(t) \mathbf{\Phi}^{-1}(s)\)

Problem 15

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{rr}{5} & {-1} \\ {3} & {1}\end{array}\right) $$

Problem 15

Consider the linear homogeneous system $$ \begin{aligned} x^{\prime} &=p_{11}(t) x+p_{12}(t) y \\ y^{\prime} &=p_{21}(t) x+p_{22}(t) y \end{aligned} $$ Show that if \(x=x_{1}(t), y=y_{1}(t)\) and \(x=x_{2}(t), y=y_{2}(t)\) are two solutions of the given system, then \(x=c_{1} x_{1}(t)+c_{2} x_{2}(t), y=c_{1} y_{1}(t)+c_{2} y_{2}(t)\) is also a solution for any constants \(c_{1}\) and \(c_{2} .\) This is the principle of superposition.

Problem 15

Verify that the given vector is the general solution of the corresponding homogeneous system, and then solve the non-homogeneous system. Assume that \(t>0 .\) $$ t \mathrm{x}^{\prime}=\left(\begin{array}{cc}{3} & {-2} \\ {2} & {-2}\end{array}\right) \mathrm{x}+\left(\begin{array}{c}{-2 t} \\\ {t^{4}-1}\end{array}\right), \quad \mathbf{x}^{(c)}=c_{1}\left(\begin{array}{c}{1} \\ {2}\end{array}\right) t^{-1}+c_{2}\left(\begin{array}{c}{2} \\ {1}\end{array}\right) t^{2} $$

Problem 15

Either compute the inverse of the given matrix, or else show that it is singular. \(\left(\begin{array}{lll}{2} & {1} & {0} \\ {0} & {2} & {1} \\ {0} & {0} & {2}\end{array}\right)\)

Problem 16

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{ll}{3} & {-2} \\ {4} & {-1}\end{array}\right) $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks