Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 9

Solve the given differential equation by means of a power series about the given point \(x_{0} .\) Find the recurrence relation; also find the first four terms in each of two linearly independent solutions (unless the series terminates sooner). If possible, find the general term in each solution. \(\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0, \quad x_{0}=0\)

Problem 9

Find all the regular singular points of the given differential equation. Determine the indicial equation and the exponents at the singularity for each regular singular point. \(x^{2}(1-x) v^{\prime \prime}-(1+x) v^{\prime}+2 x v=0\)

Problem 9

Determine the general solution of the given differential equation that is valid in any interval not including the singular point. \(x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0\)

Problem 10

Find all singular points of the given equation and determine whether each one is regular or irregular. \(x(3-x) y^{\prime \prime}+(x+1) y^{\prime}-2 y=0\)

Problem 10

Determine the general solution of the given differential equation that is valid in any interval not including the singular point. \((x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0\)

Problem 10

Show that the given differential equation has a regular singular point at \(x=0 .\) Determine the indicial equation, the recurrence relation, and the roots of the indicial equation. Find the series solution \((x>0)\) corresponding to the larger root. If the roots are unequal and do not differ by an integer, find the series solution corresponding to the smaller root also. \(x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0\)

Problem 10

Determine the Taylor series about the point \(x_{0}\) for the given function. Also determine the radius of convergence of the series. \(e^{x}, \quad x_{0}=0\)

Problem 10

The Chebyshev Equation. The Chebyshev? differential equation is $$ \left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0 $$ where \(\alpha\) is a constant. (a) Determine two linearly independent solutions in powers of \(x\) for \(|x|<1 .\) (b) Show that if \(\alpha\) is a nonnegative integer \(n\), then there is a polynomial solution of degree \(n\). These polynomials, when properly normalized, are called the Chebyshev polynomials. They are very useful in problems requiring a polynomial approximation to a function defined on \(-1 \leq x \leq 1\). (c) Find a polynomial solution for each of the cases \(\alpha=n=0,1,2,\) and \(3 .\)

Problem 10

Solve the given differential equation by means of a power series about the given point \(x_{0} .\) Find the recurrence relation; also find the first four terms in each of two linearly independent solutions (unless the series terminates sooner). If possible, find the general term in each solution. \(\left(4-x^{2}\right) y^{\prime \prime}+2 y=0, \quad x_{0}=0\)

Problem 10

In this section we showed that one solution of Bessel's equation of order zero, $$ L[y]=x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0 $$ is \(J_{0}\), where \(J_{0}(x)\) is given by Fa. ( 7) with \(a_{0}=1\). According to Theorem 5.7 .1 a second solution has the form \((x>0)\) $$ y_{2}(x)=J_{0}(x) \ln x+\sum_{n=1}^{\infty} b_{n} x^{n} $$ (a) Show that $$ L\left[y_{2}\right](x)=\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n}+\sum_{n=1}^{\infty} n b_{n} x^{n}+\sum_{n=1}^{\infty} b_{n} x^{n+2}+2 x J_{0}^{\prime}(x) $$ (b) Substituting the series representation for \(J_{0}(x)\) in Eq. (i), show that $$ b_{1} x+2^{2} b_{2} x^{2}+\sum_{n=3}^{\infty}\left(n^{2} b_{n}+b_{n-2}\right) x^{n}=-2 \sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n x^{2 n}}{2^{2 n}(n !)^{2}} $$ (c) Note that only even powers of \(x\) appear on the right side of Eq. (ii). Show that \(b_{1}=b_{3}=b_{5}=\cdots=0, b_{2}=1 / 2^{2}(1 !)^{2},\) and that $$ (2 n)^{2} b_{2 n}+b_{2 n-2}=-2(-1)^{n}(2 n) / 2^{2 n}(n !)^{2}, \quad n=2,3,4, \ldots $$ Deduce that $$ b_{4}=-\frac{1}{2^{2} 4^{2}}\left(1+\frac{1}{2}\right) \quad \text { and } \quad b_{6}=\frac{1}{2^{2} 4^{2} 6^{2}}\left(1+\frac{1}{2}+\frac{1}{3}\right) $$ The general solution of the recurrence relation is \(b_{2 n}=(-1)^{n+1} H_{n} / 2^{2 n}(n !)^{2}\). Substituting for \(b_{n}\) in the expression for \(y_{2}(x)\) we obtain the solution given in \(\mathrm{Eq} .(10) .\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks