Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 22

Show that the equations are not exact, but become exact when multiplied by the given integrating factor. Then solve the equations. $$ (x+2) \sin y d x+x \cos y d y=0, \quad \mu(x, y)=x e^{x} $$

Problem 22

Epidemics. The use of mathematical methods to study the spread of contagious diseases goes back at least to some work by Daniel Bernoulli in 1760 on smallpox. In more recent years many mathematical models have been proposed and studied for many different diseases. Deal with a few of the simpler models and the conclusions that can be drawn from them. Similar models have also been used to describe the spread of rumors and of consumer products. Suppose that a given population can be divided into two parts: those who have a given disease and can infect others, and those who do not have it but are susceptible. Let \(x\) be the proportion of susceptible individuals and \(y\) the proportion of infectious individuals; then \(x+y=1 .\) Assume that the disease spreads by contact between sick and well members of the population, and that the rate of spread \(d y / d t\) is proportional to the number of such contacts. Further, assume that members of both groups move about freely among each other, so the number of contacts is proportional to the product of \(x\) and \(y .\) since \(x=1-y\) we obtain the initial value problem $$ d y / d t=\alpha y(1-y), \quad y(0)=y_{0} $$ where \(\alpha\) is a positive proportionality factor, and \(y_{0}\) is the initial proportion of infectious individuals. (a) Find the equilibrium points for the differential equation (i) and determine whether each is asymptotically stable, semistable, or unstable. (b) Solve the initial value problem (i) and verify that the conclusions you reached in part (a) are correct. Show that \(y(t) \rightarrow 1\) as \(t \rightarrow \infty,\) which means that ultimately the disease spreads through the entire population.

Problem 23

Solve the initial value problem $$ y^{\prime}=2 y^{2}+x y^{2}, \quad y(0)=1 $$ and determine where the solution attains its minimum value.

Problem 23

(a) Draw a direction field for the given differential equation. How do solutions appear to behave as \(t \rightarrow 0 ?\) Does the behavior depend on the choice of the initial value \(a\) ? Let \(a_{0}\) be the value of \(a\) for which the transition from one type of behavior to another occurs. Estimate the value of \(a_{0}\). (b) Solve the initial value problem and find the critical value \(a_{0}\) exactly. (c) Describe the behavior of the solution corresponding to the initial value \(a_{0}\) - $$ t y^{\prime}+(t+1) y=2 t e^{-t}, \quad y(1)=a $$

Problem 23

Show that if \(\left(N_{x}-M_{y}\right) / M=Q,\) where \(Q\) is a function of \(y\) only, then the differential equation $$ M+N y^{\prime}=0 $$ has an integrating factor of the form $$ \mu(y)=\exp \int Q(y) d y $$

Problem 23

Epidemics. The use of mathematical methods to study the spread of contagious diseases goes back at least to some work by Daniel Bernoulli in 1760 on smallpox. In more recent years many mathematical models have been proposed and studied for many different diseases. Deal with a few of the simpler models and the conclusions that can be drawn from them. Similar models have also been used to describe the spread of rumors and of consumer products. Some diseases (such as typhoid fever) are spread largely by carriers, individuals who can transmit the disease, but who exhibit no overt symptoms. Let \(x\) and \(y,\) respectively, denote the proportion of susceptibles and carriers in the population. Suppose that carriers are identified and removed from the population at a rate \(\beta,\) so $$ d y / d t=-\beta y $$ Suppose also that the disease spreads at a rate proportional to the product of \(x\) and \(y\); thus $$ d x / d t=\alpha x y $$ (a) Determine \(y\) at any time \(t\) by solving Eq. (i) subject to the initial condition \(y(0)=y_{0}\). (b) Use the result of part (a) to find \(x\) at any time \(t\) by solving Eq. (ii) subject to the initial condition \(x(0)=x_{0}\). (c) Find the proportion of the population that escapes the epidemic by finding the limiting value of \(x\) as \(t \rightarrow \infty\).

Problem 23

(a) Show that \(\phi(t)=e^{2 t}\) is a solution of \(y^{\prime}-2 y^{\prime}-2 y=0\) and that \(y=c \phi(t)\) is also a solution of this equatio for any value of the conntanct \(y^{2}=0\) for \(t>0\), but that \(y=c \phi(t)\) is (b) Show that \(\phi(t)=1 / t\) is a solution of \(y^{\prime}+y^{2}=0\) for \(t>0\), but that \(y=c \phi(t)\) is not solution of this equation anless \(c=0\) or \(c=1 .\) Note that the equation of part (b) is nonlinear, while that of part (a) is linear.

Problem 23

Use the technique discussed in Problem 20 to show that the approximation obtained by the Euler method converges to the exact solution at any fixed point as \(h \rightarrow 0 .\) $$ y^{\prime}=\frac{1}{2}-t+2 y, \quad y(0)=1 \quad \text { Hint: } y_{1}=(1+2 h)+t_{1} / 2 $$

Problem 24

Show that if \(\left(N_{x}-M_{y}\right) /(x M-y N)=R,\) where \(R\) depends on the quantity \(x y\) only, then the differential equation $$ M+N y^{\prime}=0 $$ has an integrating factor of the form \(\mu(x y)\). Find a general formula for this integrating factor.

Problem 24

Show that if \(y=\phi(t)\) is a solution of \(y^{\prime}+p(t) y=0,\) then \(y=c \phi(t)\) is also a solution for any value of the constant \(c .\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks