Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 24

Solve the initial value problem $$ y^{\prime}=\left(2-e^{x}\right) /(3+2 y), \quad y(0)=0 $$ and determine where the solution attains its maximum value.

Problem 24

Epidemics. The use of mathematical methods to study the spread of contagious diseases goes back at least to some work by Daniel Bernoulli in 1760 on smallpox. In more recent years many mathematical models have been proposed and studied for many different diseases. Deal with a few of the simpler models and the conclusions that can be drawn from them. Similar models have also been used to describe the spread of rumors and of consumer products. Daniel Bemoulli's work in 1760 had the goal of appraising the effectiveness of a controversial inoculation program against smallpox, which at that time was a major threat to public health. His model applies equally well to any other disease that, once contracted and survived, confers a lifetime immunity. Consider the cohort of individuals born in a given year \((t=0),\) and let \(n(t)\) be the number of these individuals surviving \(l\) years later. Let \(x(t)\) be the number of members of this cohort who have not had smallpox by year \(t,\) and who are therefore still susceptible. Let \(\beta\) be the rate at which susceptibles contract smallpox, and let \(v\) be the rate at which people who contract smallpox die from the disease. Finally, let \(\mu(t)\) be the death rate from all causes other than smallpox. Then \(d x / d t,\) the rate at which the number of susceptibles declines, is given by $$ d x / d t=-[\beta+\mu(t)] x $$ the first term on the right side of Eq. (i) is the rate at which susceptibles contract smallpox, while the second term is the rate at which they die from all other causes. Also $$ d n / d t=-v \beta x-\mu(t) n $$ where \(d n / d t\) is the death rate of the entire cohort, and the two terms on the right side are the death rates duc to smallpox and to all other causes, respectively. (a) Let \(z=x / n\) and show that \(z\) satisfics the initial value problem $$ d z / d t=-\beta z(1-v z), \quad z(0)=1 $$ Observe that the initial value problem (iii) does not depend on \(\mu(t) .\) (b) Find \(z(t)\) by solving Eq. (iii). (c) Bernoulli estimated that \(v=\beta=\frac{1}{8} .\) Using these values, determine the proportion of 20 -year-olds who have not had smallpox.

Problem 25

Let \(y=y_{1}(t)\) be a solution of $$ y^{\prime}+p(t) y=0 $$ and let \(y=y_{2}(t)\) be a solution of $$ y^{\prime}+p(t) y=g(t) $$ Show that \(y=y_{1}(t)+y_{2}(t)\) is also a solution of Eq. (ii).

Problem 25

Find an integrating factor and solve the given equation. $$ \left(3 x^{2} y+2 x y+y^{3}\right) d x+\left(x^{2}+y^{2}\right) d y=0 $$

Problem 25

Consider the initial value problem $$ y^{\prime}+\frac{1}{2} y=2 \cos t, \quad y(0)=-1 $$ Find the coordinates of the first local maximum point of the solution for \(t>0 .\)

Problem 25

Solve the initial value problem $$ y^{\prime}=2 \cos 2 x /(3+2 y), \quad y(0)=-1 $$ and determine where the solution attains its maximum value.

Problem 25

A body of constant mass \(m\) is projected vertically upward with an initial velocity \(v_{0}\) in a medium offering a resistance \(k|v|,\) where \(k\) is a constant. Neglect changes in the gravitational force. $$ \begin{array}{l}{\text { (a) Find the maximum height } x_{m} \text { attained by the body and the time } t_{m} \text { at which this }} \\ {\text { maximum height is reached. }} \\ {\text { (b) Show that if } k v_{0} / m g<1, \text { then } t_{m} \text { and } x_{m} \text { can be expressed as }}\end{array} $$ $$ \begin{array}{l}{t_{m}=\frac{v_{0}}{g}\left[1-\frac{1}{2} \frac{k v_{0}}{m g}+\frac{1}{3}\left(\frac{k v_{0}}{m g}\right)^{2}-\cdots\right]} \\\ {x_{m}=\frac{v_{0}^{2}}{2 g}\left[1-\frac{2}{3} \frac{k r_{0}}{m g}+\frac{1}{2}\left(\frac{k v_{0}}{m g}\right)^{2}-\cdots\right]}\end{array} $$ $$ \text { (c) Show that the quantity } k v_{0} / m g \text { is dimensionless. } $$

Problem 26

Find an integrating factor and solve the given equation. $$ y^{\prime}=e^{2 x}+y-1 $$

Problem 26

Consider the initial value problem $$ y^{\prime}+\frac{2}{3} y=1-\frac{1}{2} t, \quad y(0)=y_{0} \text { . } $$ Find the value of \(y_{0}\) for which the solution touches, but does not cross, the \(t\) -axis.

Problem 26

Chemical Reactions. A second order chemical reaction involves the interaction (collision) of one molecule of a substance \(P\) with one molecule of a substance \(Q\) to produce one molecule of a new substance \(X ;\) this is denoted by \(P+Q \rightarrow X\). Suppose that \(p\) and \(q\), where \(p \neq q,\) are the initial concentrations of \(P\) and \(Q,\) respectively, and let \(x(t)\) be the concentration of \(X\) at time \(t\). Then \(p-x(t)\) and \(q-x(t)\) are the concentrations of \(P\) and \(Q\) at time \(t,\) and the rate at which the reaction occurs is given by the equation $$ d x / d t=\alpha(p-x)(q-x) $$ where \(\alpha\) is a positive constant. (a) If \(x(0)=0\), determine the limiting value of \(x(t)\) as \(t \rightarrow \infty\) without solving the differential equation. Then solve the initial value problem and find \(x(t)\) for any \(l .\) (b) If the substances \(P\) and \(Q\) are the same, then \(p=q\) and \(\mathrm{Eq}\). (i) is replaced by $$ d x / d t=\alpha(p-x)^{2} $$ If \(x(0)=0,\) determine the limiting value of \(x(t)\) as \(t \rightarrow \infty\) without solving the differential equation. Then solve the initial value problem and determine \(x(t)\) for any \(t .\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks