Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 21

Harvesting a Renewable Resource. Suppose that the population \(y\) of a certain species of fish (for example, tuna or halibut) in a given area of the ocean is described by the logistic equation $$ d y / d t=r(1-y / K) y . $$ While it is desirable to utilize this source of food, it is intuitively clear that if too many fish are caught, then the fish population may be reduced below a useful level, and possibly even driven to extinction. Problems 20 and 21 explore some of the questions involved in formulating a rational strategy for managing the fishery. In this problem we assume that fish are caught at a constant rate \(h\) independent of the size of the fish population. Then \(y\) satisfies $$ d y / d t=r(1-y / K) y-h $$ The assumption of a constant catch rate \(h\) may be reasonable when \(y\) is large, but becomes less so when \(y\) is small. (a) If \(hy_{0}>y_{1},\) then \(y \rightarrow y_{2}\) as \(t \rightarrow \infty,\) but that if \(y_{0}r K / 4,\) show that \(y\) decreases to zero as \(l\) increases regardless of the value of \(y_{0}\). (c) If \(h=r K / 4\), show that there is a single cquilibrium point \(y=K / 2\) and that this point is semistable (see Problem 7 ). Thus the maximum sustainable yield is \(h_{m}=r K / 4\) corresponding to the equilibrium value \(y=K / 2 .\) Observe that \(h_{m}\) has the same value as \(Y_{m}\) in Problem \(20(\mathrm{d})\). The fishery is considered to be overexploited if \(y\) is reduced to a level below \(K / 2\).

Problem 21

(a) Draw a direction field for the given differential equation. How do solutions appear to behave as \(t\) becomes large? Does the behavior depend on the choice of the initial value a? Let \(a_{0}\) be the value of \(a\) for which the transition from one type of behavior to another occurs. Estimate the value of \(a_{0}\). (b) Solve the initial value problem and find the critical value \(a_{0}\) cractly. (c) Describe the behavior of the solution corresponding to the initial value \(a_{0}\). $$ y^{\prime}-\frac{1}{2} y=2 \cos t, \quad y(0)=a $$

Problem 21

A ball with mass \(0.15 \mathrm{kg}\) is thrown upward with initial velocity \(20 \mathrm{m} / \mathrm{sec}\) from the roof of a building \(30 \mathrm{m}\) high. Neglect air resistance. $$ \begin{array}{l}{\text { (a) Find the maximum height above the ground that the ball reaches. }} \\ {\text { (b) Assuming that the ball misses the building on the way down, find the time that it hits }} \\ {\text { the ground. }} \\\ {\text { (c) Plot the graphs of velocity and position versus time. }}\end{array} $$

Problem 21

Show that the equations are not exact, but become exact when multiplied by the given integrating factor. Then solve the equations. $$ y d x+\left(2 x-y e^{y}\right) d y=0, \quad \mu(x, y)=y $$

Problem 21

Some of the results requested in Problems 21 through 28 can be obtained either by solving the given equations analytically, or by plotting numerically generated approximations to the solutions. Try to form an opinion as to the advantages and disadvantages of each approach. Solve the initial value problem $$ y^{\prime}=\left(1+3 x^{2}\right) /\left(3 y^{2}-6 y\right), \quad y(0)=1 $$ and determine the interval in which the solution is valid. Hint: To find the interval of definition, look for points where the integral curve has a vertical tangent.

Problem 21

Consider the initial value problem \(y^{\prime}=y^{1 / 3}, y(0)=0\) from Example 3 in the text. (a) Is there a solution that passes through the point \((1,1) ?\) If so, find it. (b) Is there a solution that passes through the point \((2,1)\) ? If so, find it. (c) Consider all possible solutions of the given initial value problem. Determine the set of values that these solutions have at \(t=2\)

Problem 22

(a) Verify that both \(y_{1}(t)=1-t\) and \(y_{2}(t)=-t^{2} / 4\) are solutions of the initial value problem $$ y^{\prime}=\frac{-t+\left(t^{2}+4 y\right)^{1 / 2}}{2}, \quad y(2)=-1 $$ Where are these solutions valid? (b) Explain why the existence of two solutions of the given problem does not contradict the uniqueness part of Theorem 2.4 .2 (c) Show that \(y=c t+c^{2},\) where \(c\) is an arbitrary constant, satisfies the differential equation in part (a) for \(t \geq-2 c .\) If \(c=-1,\) the initial condition is also satisfied, and the solution \(y=y_{1}(t)\) is obtained. Show that there is no choice of \(c\) that gives the second solution \(y=y_{2}(t) .\)

Problem 22

(a) Draw a direction field for the given differential equation. How do solutions appear to behave as \(t\) becomes large? Does the behavior depend on the choice of the initial value a? Let \(a_{0}\) be the value of \(a\) for which the transition from one type of behavior to another occurs. Estimate the value of \(a_{0}\). (b) Solve the initial value problem and find the critical value \(a_{0}\) cractly. (c) Describe the behavior of the solution corresponding to the initial value \(a_{0}\). $$ 2 y^{\prime}-y=e^{2 / 3}, \quad y(0)=a $$

Problem 22

Solve the initial value problem $$ y^{\prime}=3 x^{2} /\left(3 y^{2}-4\right), \quad y(1)=0 $$ and determine the interval in which the solution is valid. Hint: To find the interval of definition, look for points where the integral curve has a vertical tangent.

Problem 22

Use the technique discussed in Problem 20 to show that the approximation obtained by the Euler method converges to the exact solution at any fixed point as \(h \rightarrow 0 .\) $$ y^{\prime}=2 y-1, \quad y(0)=1 \quad \text { Hint: } y_{1}=(1+2 h) / 2+1 / 2 $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks