Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 1

If a UDP datagram is sent from host \(\mathrm{A}\), port \(\mathrm{P}\) to host \(\mathrm{B}\), port \(\mathrm{Q}\), but at host \(\mathrm{B}\) there is no process listening to port \(Q\), then \(B\) is to send back an ICMP Port Unreachable message to A. Like all ICMP messages, this is addressed to A as a whole, not to port \(\mathrm{P}\) on \(\mathrm{A}\). (a) Give an example of when an application might want to receive such ICMP messages. (b) Find out what an application has to do, on the operating system of your choice, to receive such messages. (c) Why might it not be a good idea to send such messages directly back to the originating port \(\mathrm{P}\) on \(\mathrm{A}\) ?

Problem 2

Consider a simple UDP-based protocol for requesting files (based somewhat loosely on the Trivial File Transport Protocol, TFTP). The client sends an initial file request, and the server answers (if the file can be sent) with the first data packet. Client and server then continue with a stop-and-wait transmission mechanism. (a) Describe a scenario by which a client might request one file but get another; you may allow the client application to exit abruptly and be restarted with the same port. (b) Propose a change in the protocol that will make this situation much less likely.

Problem 3

Design a simple UDP-based protocol for retrieving files from a server. No authentication is to be provided. Stop-and-wait transmission of the data may be used. Your protocol should address the following issues: (a) Duplication of the first packet should not duplicate the "connection." (b) Loss of the final ACK should not necessarily leave the server in doubt as to whether the transfer succeeded. (c) A late-arriving packet from a past connection shouldn't be interpretable as part of a current connection.

Problem 4

This chapter explains three sequences of state transitions during TCP connection teardown. There is a fourth possible sequence, which traverses an additional arc (not shown in Figure 5.7) from FIN_WAIT_1 to TIME_WAIT and labelled FIN + ACK/ACK. Explain the circumstances that result in this fourth teardown sequence.

Problem 5

When closing a TCP connection, why is the two-segment-lifetime timeout not necessary on the transition from LAST_ACK to CLOSED?

Problem 6

A sender on a TCP connection that receives a 0 advertised window periodically probes the receiver to discover when the window becomes nonzero. Why would the receiver need an extra timer if it were responsible for reporting that its advertised window had become nonzero (i.e., if the sender did not probe)?

Problem 7

Read the man page (or Windows equivalent) for the Unix/Windows utility netstat. Use netstat to see the state of the local TCP connections. Find out how long closing connections spend in TIME_WAIT.

Problem 8

The sequence number field in the TCP header is 32 bits long, which is big enough to cover over 4 billion bytes of data. Even if this many bytes were never transferred over a single connection, why might the sequence number still wrap around from \(2^{32}-1\) to 0 ?

Problem 9

You are hired to design a reliable byte-stream protocol that uses a sliding window (like TCP). This protocol will run over a 100-Mbps network. The RTT of the network is \(100 \mathrm{~ms}\), and the maximum segment lifetime is 60 seconds. (a) How many bits would you include in the AdvertisedWindow and SequenceNum fields of your protocol header? (b) How would you determine the numbers given above, and which values might be less certain?

Problem 10

You are hired to design a reliable byte-stream protocol that uses a sliding window (like TCP). This protocol will run over a 1-Gbps network. The RTT of the network is \(140 \mathrm{~ms}\), and the maximum segment lifetime is 60 seconds. How many bits would you include in the AdvertisedWindow and SequenceNum fields of your protocol header?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks