Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 24

The Jacobson/Karels algorithm sets TimeOut to be 4 mean deviations above the mean. Assume that individual packet round-trip times follow a statistical normal distribution, for which 4 mean deviations are \(\pi\) standard deviations. Using statistical tables, for example, what is the probability that a packet will take more than TimeOut time to arrive?

Problem 25

Suppose a TCP connection, with window size 1, loses every other packet. Those that do arrive have RTT \(=1\) second. What happens? What happens to TimeOut? Do this for two cases: (a) After a packet is eventually received, we pick up where we left off, resuming with EstimatedRTT initialized to its pretimeout value and TimeOut double that. (b) After a packet is eventually received, we resume with TimeOut initialized to the last exponentially backed-off value used for the timeout interval. In the following four exercises, the calculations involved are straightforward with a spreadsheet.

Problem 26

Suppose, in TCP's adaptive retransmission mechanism, that EstimatedRTT is \(4.0\) at some point and subsequent measured RTTs all are \(1.0\). How long does it take before the TimeOut value, as calculated by the Jacobson/Karels algorithm, falls below \(4.0\) ? Assume a plausible initial value of Deviation; how sensitive is your answer to this choice? Use \(\delta=1 / 8\).

Problem 27

Suppose, in TCP's adaptive retransmission mechanism, that EstimatedRTT is 90 at some point and subsequent measured RTTs all are 200 . How long does it take before the TimeOut value, as calculated by the Jacobson/Karels algorithm, falls below 300 ? Assume initial Deviation value of 25 ; use \(\delta=1 / 8\).

Problem 30

Suppose that, when a TCP segment is sent more than once, we take SampleRTT to be the time between the original transmission and the ACK, as in Figure \(5.10(\mathrm{a}) .\) Show that if a connection with a 1-packet window loses every other packet (i.e., each packet is transmitted twice), then EstimatedRTT increases to infinity. Assume TimeOut = EstimatedRTT; both algorithms presented in the text always set TimeOut even larger. Hint: EstimatedRTT \(=\) EstimatedRTT \(+\beta \times(\) SampleRT \(-\) EstimatedRTT).

Problem 31

Suppose that, when a TCP segment is sent more than once, we take SampleRTT to be the time between the most recent transmission and the ACK, as in Figure \(5.10\) (b). Assume, for definiteness, that TimeOut \(=2 \times\) EstimatedRTT. Sketch a scenario in which no packets are lost but EstimatedRTT converges to a third of the true RTT, and give a diagram illustrating the final steady state. Hint: Begin with a sudden jump in the true RTT to just over the established TimeOut.

Problem 32

Consult Request for Comments 793 to find out how TCP is supposed to respond if a FIN or an RST arrives with a sequence number other than NextByteExpected. Consider both when the sequence number is within the receive window and when it is not.

Problem 33

One of the purposes of TIME_WAIT is to handle the case of a data packet from a first incarnation of a connection arriving very late and being accepted as data for the second incarnation. (a) Explain why, for this to happen (in the absence of TIME_WAIT), the hosts involved would have to exchange several packets in sequence after the delayed packet was sent but before it was delivered. (b) Propose a network scenario that might account for such a late delivery.

Problem 34

Propose an extension to TCP by which one end of a connection can hand off its end to a third host; that is, if \(\mathrm{A}\) were connected to \(\mathrm{B}\), and \(\mathrm{A}\) handed off its connection to \(\mathrm{C}\), then afterwards \(\mathrm{C}\) would be connected to \(\mathrm{B}\) and \(\mathrm{A}\) would not. Specify the new states and transitions needed in the TCP state transition diagram, and any new packet types involved. You may assume all parties will understand this new option. What state should A go into immediately after the handoff?

Problem 35

TCP's simultaneous open feature is seldom used. (a) Propose a change to TCP in which this is disallowed. Indicate what changes would be made in the state diagram (and if necessary in the undiagrammed event responses). (b) Could TCP reasonably disallow simultaneous close? (c) Propose a change to TCP in which simultaneous SYNs exchanged by two hosts lead to two separate connections. Indicate what state diagram changes this entails, and also what header changes become necessary. Note that this now means that more than one connection can exist over a given pair of \langlehost, port)s. (You might also look up the first "Discussion" item on page 87 of Request for Comments \(1122 .\) )

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks