Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 36

TCP is a very symmetric protocol, but the client/server model is not. Consider an asymmetric TCP-like protocol in which only the server side is assigned a port number visible to the application layers. Client-side sockets would simply be abstractions that can be connected to server ports. (a) Propose header data and connection semantics to support this. What will you use to replace the client port number? (b) What form does TIME_WAIT now take? How would this be seen through the programming interface? Assume that a client socket could now be reconnected arbitrarily many times to a given server port, resources permitting. (c) Look up the \(\mathrm{rsh} / \mathrm{rlogin}\) protocol. How would the above break this?

Problem 38

Request for Comments 1122 states (of TCP): A host MAY implement a "half-duplex" TCP close sequence, so that an application that has called CLOSE cannot continue to read data from the connection. If such a host issues a CLOSE call while received data is still pending in TCP, or if new data is received after CLOSE is called, its TCP SHOULD send an RST to show that data was lost. Sketch a scenario involving the above in which data sent by (not to!) the closing host is lost. You may assume that the remote host, upon receiving an RST, discards all received data still unread in buffers.

Problem 39

When TCP sends a \(\langle\) SYN, SequenceNum \(=x\rangle\) or \(\langle\) FIN, SequenceNum \(=x\rangle\), the consequent ACK has Acknowledgment \(=x+1\); that is, SYNs and FINs each take up one unit in sequence number space. Is this necessary? If so, give an example of an ambiguity that would arise if the corresponding Acknowledgment were \(x\) instead of \(x+1 ;\) if not, explain why.

Problem 40

Find out the generic format for TCP header options from Request for Comments \(793 .\) (a) Outline a strategy that would expand the space available for options beyond the current limit of 44 bytes. (b) Suggest an extension to TCP allowing the sender of an option a way of specifying what the receiver should do if the option is not understood. List several such receiver actions that might be useful, and try to give an example application of each.

Problem 42

Suppose we were to implement remote file system mounting using an unreliable RPC protocol that offers zero-or-more semantics. If a message reply is received, this improves to at-least-once semantics. We define read() to return the specified Nth block, rather than the next block in sequence; this way reading once is the same as reading twice and at-least-once semantics is thus the same as exactly once. (a) For what other file system operations is there no difference between at- leastonce and exactly once semantics? Consider open, create, write, seek, opendir, readdir, mkdir, delete (aka unlink), and rmdir. (b) For the remaining operations, which can have their semantics altered to achieve equivalence of at-least-once and exactly once? What file system operations are irreconcilable with at-least-once semantics? (c) Suppose the semantics of the rmdir system call are now that the given directory is removed if it exists, and nothing is done otherwise. How could you write a program to delete directories that distinguishes between these two cases?

Problem 43

The RPC-based "NFS" remote file system is sometimes considered to have slower than expected write performance. In NFS, a server's RPC reply to a client write request means that the data is physically written to the server's disk, not just placed in a queue. (a) Explain the bottleneck we might expect, even with infinite bandwidth, if the client sends all its write requests through a single logical CHAN channel, and explain why using a pool of channels could help. Hint: You will need to know a little about disk controllers. (b) Suppose the server's reply means only that the data has been placed in the disk queue. Explain how this could lead to data loss that wouldn't occur with a local disk. Note that a system crash immediately after data was enqueued doesn't count because that would cause data loss on a local disk as well. (c) An alternative would be for the server to respond immediately to acknowledge the write request, and to send its own separate CHAN request later to confirm the physical write. Propose different CHAN RPC semantics to achieve the same effect, but with a single logical request/reply.

Problem 47

Suppose an RPC request is of the form "Increment the value of field X of disk block \(\mathrm{N}\) by \(10 \%\)." Specify a mechanism to be used by the executing server to guarantee that an arriving request is executed exactly once, even if the server crashes while in the middle of the operation. Assume that individual disk block writes are either complete or else the block is unchanged. You may also assume that some designated "undo log" blocks are available. Your mechanism should include how the RPC server is to behave at restart.

Problem 48

Consider a SunRPC client sending a request to a server. (a) Under what circumstances can the client be sure its request has executed exactly once? (b) Suppose we wished to add at-most-once semantics to SunRPC. What changes would have to be made? Explain why adding one or more fields to the existing headers would not be sufficient.

Problem 50

Suppose BLAST runs over a 10-Mbps Ethernet, sending \(32 \mathrm{~K}\) messages. (a) If the Ethernet packets can hold 1500 bytes of data, and optionless IP headers are used as well as BLAST headers, how many Ethernet packets are required per message? (b) Calculate the delay due to sending a \(32 \mathrm{~K}\) message over Ethernet (i) directly (ii) broken into pieces as in (a), with one bridge Ignore propagation delays, headers, collisions, and interpacket gaps.

Problem 51

Write a test program that uses the socket interface to send messages between a pair of Unix workstations connected by some LAN (e.g., Ethernet, ATM, or FDDI). Use this test program to perform the following experiments. (a) Measure the round-trip latency of TCP and UDP for different message sizes (e.g., 1 byte, 100 bytes, 200 bytes, ..., 1000 bytes). (b) Measure the throughput of TCP and UDP for 1-KB, 2-KB, 3-KB, ...,32-KB messages. Plot the measured throughput as a function of message size. (c) Measure the throughput of TCP by sending \(1 \mathrm{MB}\) of data from one host to another. Do this in a loop that sends a message of some size, for example, 1024 iterations of a loop that sends 1-KB messages. Repeat the experiment with different message sizes and plot the results.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks