Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 96

A silver rod and a SHE are dipped into a saturated aqueous solution of silver oxalate \(\left(\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)\), at \(25^{\circ} \mathrm{C}\). The measured potential difference between the rod and the SHE is \(0.589 \mathrm{~V},\) the rod being positive. Calculate the solubility product constant for silver oxalate.

Problem 97

Zinc is an amphoteric metal; that is, it reacts with both acids and bases. The standard reduction potential is \(-1.36 \mathrm{~V}\) for the reaction: $$ \mathrm{Zn}(\mathrm{OH})_{4}^{2-}(a q)+2 e^{-} \longrightarrow \mathrm{Zn}(s)+4 \mathrm{OH}^{-}(a q)$$ Calculate the formation constant \(\left(K_{\mathrm{f}}\right)\) for the reaction: $$ \mathrm{Zn}^{2+}(a q)+4 \mathrm{OH}^{-}(a q) \rightleftharpoons \mathrm{Zn}(\mathrm{OH})_{4}^{2-}(a q) $$

Problem 99

The magnitudes (but not the signs) of the standard reduction potentials of two metals \(\mathrm{X}\) and \(\mathrm{Y}\) are: $$ \begin{aligned} \mathrm{Y}^{2+}+2 e^{-} \longrightarrow & \mathrm{Y} & &\left|E^{\circ}\right|=0.34 \mathrm{~V} \\\ \mathrm{X}^{2+}+2 e^{-} \longrightarrow & \mathrm{X} & &\left|E^{\circ}\right|=0.25 \mathrm{~V} \end{aligned}$$ where the \(\|\) notation denotes that only the magnitude (but not the sign) of the \(E^{\circ}\) value is shown. When the half-cells of \(X\) and \(Y\) are connected, electrons flow from \(X\) to \(Y\). When \(X\) is connected to a SHE, electrons flow from \(\mathrm{X}\) to SHE. (a) Are the \(E^{\circ}\) values of the halfreactions positive or negative? (b) What is the standard emf of a cell made up of \(X\) and \(Y ?\)

Problem 104

A galvanic cell using \(\mathrm{Mg} / \mathrm{Mg}^{2+}\) and \(\mathrm{Cu} / \mathrm{Cu}^{2+}\) half-cells operates under standard-state conditions at \(25^{\circ} \mathrm{C},\) and each compartment has a volume of \(218 \mathrm{~mL}\). The cell delivers 0.22 A for 31.6 h. (a) How many grams of \(\mathrm{Cu}\) are deposited? (b) What is the \(\left[\mathrm{Cu}^{2+}\right]\) remaining?

Problem 105

Given the following standard reduction potentials, calculate the ion-product, \(K_{\mathrm{w}},\) for water at \(25^{\circ} \mathrm{C}:\) $$ \begin{array}{ll} 2 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{H}_{2}(\mathrm{~g}) & E^{\circ}=0.00 \mathrm{~V} \\ 2 \mathrm{H}_{2} \mathrm{O}(l)+2 e^{-} \longrightarrow \mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q) & E^{\circ}=-0.83 \mathrm{~V} \end{array} $$

Problem 107

Consider a Daniell cell operating under non-standardstate conditions. Suppose that the cell's reaction is multiplied by 2 . What effect does this have on each of the following quantities in the Nernst equation: (a) \(E\) (b) \(E^{\circ},(\mathrm{c}) Q\) (d) \(\ln Q\), (e) \(n\) ?

Problem 108

A spoon was silver-plated electrolytically in an \(\mathrm{AgNO}_{3}\) solution. (a) Sketch a diagram for the process. (b) If \(0.884 \mathrm{~g}\) of Ag was deposited on the spoon at a constant current of \(18.5 \mathrm{~mA}\), how long (in min) did the electrolysis take?

Problem 109

Comment on whether \(\mathrm{F}_{2}\) will become a stronger oxidizing agent with increasing \(\mathrm{H}^{+}\) concentration.

Problem 110

Explain why chlorine gas can be prepared by electrolyzing an aqueous solution of \(\mathrm{NaCl}\) but fluorine gas cannot be prepared by electrolyzing an aqueous solution of NaF.

Problem 111

Calculate the pressure of \(\mathrm{H}_{2}\) (in atm) required to maintain equilibrium with respect to the following reaction at \(25^{\circ} \mathrm{C}:\) $$\mathrm{Pb}(s)+2 \mathrm{H}^{+}(a q) \rightleftarrows \mathrm{Pb}^{2+}(a q)+\mathrm{H}_{2}(g)$$ given that \(\left[\mathrm{Pb}^{2+}\right]=0.035 M\) and the solution is buffered at \(\mathrm{pH} 1.60\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks