Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 125

The \(\mathrm{SO}_{2}\) present in air is mainly responsible for the phenomenon of acid rain. The concentration of \(\mathrm{SO}_{2}\) can be determined by titrating against a standard permanganate solution as follows: \(5 \mathrm{SO}_{2}+2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 5 \mathrm{SO}_{4}^{2-}+2 \mathrm{Mn}^{2+}+4 \mathrm{H}^{+}\) Calculate the number of grams of \(\mathrm{SO}_{2}\) in a sample of air if \(7.37 \mathrm{~mL}\) of \(0.00800 \mathrm{M} \mathrm{KMnO}_{4}\) solution is required for the titration.

Problem 126

The zinc-air battery shows much promise for electric cars because it is lightweight and rechargeable: The net transformation is \(\mathrm{Zn}(s)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{ZnO}(s)\) (a) Write the half-reactions at the zinc-air electrodes, and calculate the standard emf of the battery at \(25^{\circ} \mathrm{C}\). (b) Calculate the emf under actual operating conditions when the partial pressure of oxygen is 0.21 atm. (c) What is the energy density (measured as the energy in kilojoules that can be obtained from \(1 \mathrm{~kg}\) of the metal) of the zinc electrode? (d) If a current of \(2.1 \times 10^{5} \mathrm{~A}\) is to be drawn from a zinc-air battery system, what volume of air (in liters) would need to be supplied to the battery every second? Assume that the temperature is \(25^{\circ} \mathrm{C}\) and the partial pressure of oxygen is 0.21 atm.

Problem 127

A current of 6.00 A passes through an electrolytic cell containing dilute sulfuric acid for \(3.40 \mathrm{~h}\). If the volume of \(\mathrm{O}_{2}\) gas generated at the anode is \(4.26 \mathrm{~L}\) (at STP), calculate the charge (in coulombs) on an electron.

Problem 128

A \(9.00 \times 10^{2} \mathrm{~mL}\) amount of \(0.200 \mathrm{M} \mathrm{MgI}_{2}\) solution was electrolyzed. As a result, hydrogen gas was generated at the cathode and iodine was formed at the anode. The volume of hydrogen collected at \(26^{\circ} \mathrm{C}\) and \(779 \mathrm{mmHg}\) was \(1.22 \times 10^{3} \mathrm{~mL}\). (a) Calculate the charge in coulombs consumed in the process. (b) How long (in min) did the electrolysis last if a current of 7.55 A was used? (c) A white precipitate was formed in the process. What was it, and what was its mass in grams? Assume the volume of the solution was constant.

Problem 129

When \(25.0 \mathrm{~mL}\) of a solution containing both \(\mathrm{Fe}^{2+}\) and \(\mathrm{Fe}^{3+}\) ions is titrated with \(23.0 \mathrm{~mL}\) of \(0.0200 \mathrm{M} \mathrm{KMnO}_{4}\) (in dilute sulfuric acid), all the \(\mathrm{Fe}^{2+}\) ions are oxidized to \(\mathrm{Fe}^{3+}\) ions. Next, the solution is treated with Zn metal to convert all the \(\mathrm{Fe}^{3+}\) ions to \(\mathrm{Fe}^{2+}\) ions. Finally, \(40.0 \mathrm{~mL}\) of the same \(\mathrm{KMnO}_{4}\) solution is added to the solution to oxidize the \(\mathrm{Fe}^{2+}\) ions to \(\mathrm{Fe}^{3+}\). Calculate the molar concentrations of \(\mathrm{Fe}^{2+}\) and \(\mathrm{Fe}^{3+}\) in the original solution.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks