Problem 81
An acidified solution was electrolyzed using copper electrodes. A constant current of 1.18 A caused the anode to lose \(0.584 \mathrm{~g}\) after \(1.52 \times 10^{3} \mathrm{~s}\). (a) What is the gas produced at the cathode, and what is its volume at STP? (b) Given that the charge of an electron is \(1.6022 \times 10^{-19} \mathrm{C},\) calculate Avogadro's number. Assume that copper is oxidized to \(\mathrm{Cu}^{2+}\) ions.
Problem 82
In a certain electrolysis experiment involving \(\mathrm{Al}^{3+}\) ions, \(60.2 \mathrm{~g}\) of \(\mathrm{Al}\) is recovered when a current of \(0.352 \mathrm{~A}\) is used. How many minutes did the electrolysis last?
Problem 84
When an aqueous solution containing gold(III) salt is electrolyzed, metallic gold is deposited at the cathode and oxygen gas is generated at the anode. (a) If \(9.26 \mathrm{~g}\) of Au is deposited at the cathode, calculate the volume (in liters) of \(\mathrm{O}_{2}\) generated at \(23^{\circ} \mathrm{C}\) and \(747 \mathrm{mmHg}\). (b) What is the current used if the electrolytic process took \(2.00 \mathrm{~h} ?\)
Problem 85
In an electrolysis experiment, a student passes the same quantity of electricity through two electrolytic cells, one containing a silver salt and the other a gold salt. Over a certain period of time, the student finds that \(2.64 \mathrm{~g}\) of Ag and \(1.61 \mathrm{~g}\) of Au are deposited at the cathodes. What is the oxidation state of gold in the gold salt?
Problem 87
Given that: $$ \begin{array}{ll} 2 \mathrm{Hg}^{2+}(a q)+2 e^{-} \longrightarrow \mathrm{Hg}_{2}^{2+}(a q) & E^{\circ}=0.92 \mathrm{~V} \\\ \mathrm{Hg}_{2}^{2+}(a q)+2 e^{-} \longrightarrow 2 \mathrm{Hg}(l) & E^{\circ}=0.85 \mathrm{~V} \end{array} $$ calculate \(\Delta G^{\circ}\) and \(K\) for the following process at \(25^{\circ} \mathrm{C}:\) $$\mathrm{Hg}_{2}^{2+}(a q) \longrightarrow \mathrm{Hg}^{2+}(a q)+\mathrm{Hg}(l)$$ (The preceding reaction is an example of a disproportionation reaction in which an element in one oxidation state is both oxidized and reduced.)
Problem 88
Fluorine \(\left(\mathrm{F}_{2}\right)\) is obtained by the electrolysis of liquid hydrogen fluoride (HF) containing potassium fluoride \((\mathrm{KF})\). (a) Write the half-cell reactions and the overall reaction for the process. (b) What is the purpose of \(\mathrm{KF}\) ? (c) Calculate the volume of \(\mathrm{F}_{2}\) (in liters) collected at \(24.0^{\circ} \mathrm{C}\) and 1.2 atm after electrolyzing the solution for \(15 \mathrm{~h}\) at a current of \(502 \mathrm{~A}\).
Problem 90
A piece of magnesium ribbon and a copper wire are partially immersed in a \(0.1 M \mathrm{HCl}\) solution in a beaker. The metals are joined externally by another piece of metal wire. Bubbles are seen to evolve at both the \(\mathrm{Mg}\) and Cu surfaces. (a) Write equations representing the reactions occurring at the metals. (b) What visual evidence would you seek to show that Cu is not oxidized to \(\mathrm{Cu}^{2+} ?(\mathrm{c})\) At some stage, \(\mathrm{NaOH}\) solution is added to the beaker to neutralize the HCl acid. Upon further addition of \(\mathrm{NaOH},\) a white precipitate forms. What is it?
Problem 91
An aqueous solution of a platinum salt is electrolyzed at a current of \(2.50 \mathrm{~A}\) for \(2.00 \mathrm{~h}\). As a result, \(9.09 \mathrm{~g}\) of metallic Pt is formed at the cathode. Calculate the charge on the Pt ions in this solution.
Problem 92
Consider a galvanic cell consisting of a magnesium electrode in contact with \(1.0 \mathrm{M}\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\) and a cadmium electrode in contact with \(1.0 \mathrm{M} \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}\). Calculate \(E^{\circ}\) for the cell, and draw a diagram showing the cathode, anode, and direction of electron flow.
Problem 95
Explain why most useful galvanic cells give voltages of no more than 1.5 to \(2.5 \mathrm{~V}\). What are the prospects for developing practical galvanic cells with voltages of \(5 \mathrm{~V}\) or more?