Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 52

The concentration of Mg \(^{2+}\) in seawater is 0.052\(M .\) At what pH will 99\(\%\) of the \(\mathrm{Mg}^{2+}\) be precipitated as the hydroxide salt? \(\left[K_{\mathrm{sp}} \text { for } \mathrm{Mg}(\mathrm{OH})_{2}=8.9 \times 10^{-12} .\right]\)

Problem 53

Will a precipitate form when 100.0 \(\mathrm{mL}\) of \(4.0 \times 10^{-4} M\) \(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\) is added to 100.0 \(\mathrm{mL}\) of \(2.0 \times 10^{-4} \mathrm{MNaOH}\)?

Problem 54

A solution contains \(1.0 \times 10^{-6} M \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}\) and \(5.0 \times 10^{-7} M\) \(\mathrm{K}_{3} \mathrm{PO}_{4} .\) Will \(\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) precipitate? \(\left[K_{\mathrm{sp}} \text { for } \mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}=1.0 \times 10^{-31} . ] \right.\)

Problem 55

A solution is prepared by mixing 100.0 \(\mathrm{mL}\) of \(1.0 \times 10^{-2} \mathrm{M}\) \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) and 100.0 \(\mathrm{mL}\) of \(1.0 \times 10^{-3} \mathrm{M} \mathrm{NaF} .\) Will \(\mathrm{PbF}_{2}(s)\) \(\left(K_{\mathrm{sp}}=4 \times 10^{-8}\right)\) precipitate?

Problem 56

If \(10.0 \mathrm{mL}\) of \(2.0 \times 10^{-3} M \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}\) is added to 10.0 \(\mathrm{mL}\) of a \(\mathrm{pH}=10.0 \mathrm{NaOH}\) solution, will a precipitate form?

Problem 57

Calculate the final concentrations of \(\mathrm{K}^{+}(a q), \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q),\) \(\mathrm{Ba}^{2+}(a q),\) and \(\operatorname{Br}^{-}(a q)\) in a solution prepared by adding 0.100 \(\mathrm{L}\) of \(0.200M\) \(\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) to 0.150 \(\mathrm{L}\) of \(0.250 M\) \(\mathrm{BaBr}_{2}\) . (For \(\mathrm{BaC}_{2} \mathrm{O}_{4}, K_{\mathrm{sp}}=2.3 \times 10^{-8} . )\)

Problem 58

When 100.0 \(\mathrm{mL}\) of 2.00 \(\mathrm{M} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3}\) is added to 100.0 \(\mathrm{mL}\) of \(3.00 \mathrm{M} \mathrm{KIO}_{3},\) a precipitate of \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}(s)\) forms. Calculate the equilibrium concentrations of \(\mathrm{Ce}^{3+}\) and \(\mathrm{IO}_{3}^{-}\) in this solution. \(\left[K_{\mathrm{sp}} \text { for } \mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}=3.2 \times 10^{-10} .\right]\)

Problem 59

A 50.0 -mL sample of \(0.00200 M\) \(\mathrm{AgNO}_{3}\) is added to 50.0 \(\mathrm{mL}\) of 0.0100 \(M\) \(\mathrm{NaIO}_{3} .\) What is the equilibrium concentration of \(\mathrm{Ag}^{+}\) in solution? \(\left(K_{\mathrm{sp}} \text { for } \mathrm{AgIO}_{3} \text { is } 3.2 \times 10^{-8} .\right)\)

Problem 60

A solution is prepared by mixing \(50.0 \mathrm{mL}\) of \(0.10M\) \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) with \(50.0 \mathrm{mL}\) of \(1.0 \mathrm{M}\) \(\mathrm{KCl}\) . Calculate the concentrations of \(\mathrm{Pb}^{2+}\) and \(\mathrm{Cl}^{-}\) at equilibrium. \(\left[K_{\mathrm{sp}} \text { for } \mathrm{PbCl}_{2}(s) \text { is } 1.6 \times 10^{-5}.\right]\)

Problem 61

A solution contains \(1.0 \times 10^{-5} M \mathrm{Na}_{3} \mathrm{PO}_{4} .\) What concentrations of \(\mathrm{A} \mathrm{g} \mathrm{NO}_{3}\) will cause precipitation of solid \(\mathrm{Ag}_{3} \mathrm{PO}_{4}\) \(\left(K_{\mathrm{sp}}=1.8 \times 10^{-18}\right) ?\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks