Problem 97
Nitrate salts are generally considered to be soluble salts. One of the least soluble nitrate salts is barium nitrate. Approximately 15 g of \(\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\) will dissolve per liter of solution. Calculate the \(K_{\mathrm{sp}}\) value for barium nitrate.
Problem 99
Assuming that the solubility of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) is \(1.6 \times 10^{-7} \mathrm{mol} / \mathrm{L}\) at \(25^{\circ} \mathrm{C},\) calculate the \(K_{\mathrm{sp}}\) for this salt. Ignore any potential reactions of the ions with water.
Problem 100
Order the following solids (a–d) from least soluble to most soluble. Ignore any potential reactions of the ions with water. a. \(\mathrm{AgCl} \quad K_{s p}=1.6 \times 10^{-10}\) b. \(\mathrm{Ag}_{2} \mathrm{S} \quad K_{\mathrm{sp}}=1.6 \times 10^{-49}\) c. \(\mathrm{CaF}_{2} \quad K_{\mathrm{sp}}=4.0 \times 10^{-11}\) d. \(\mathrm{CuS} \quad K_{\mathrm{sp}}=8.5 \times 10^{-45}\)
Problem 102
The solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) in a \(7.2 \times 10^{-2}-M\) \(\mathrm{KIO}_{3}\) solution is \(6.0 \times 10^{-9} \mathrm{mol} / \mathrm{L}\) . Calculate the \(K_{\mathrm{sp}}\) value for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\)
Problem 105
The copper(l) ion forms a complex ion with \(\mathrm{CN}^{-}\) according to the following equation: $$\mathrm{Cu}^{+}(a q)+3 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Cu}(\mathrm{CN})_{3}^{2-}(a q) \quad K=1.0 \times 10^{11}$$ a. Calculate the solubility of \(\mathrm{CuBr}(s)\left(K_{\mathrm{sp}}=1.0 \times 10^{-5}\right)\) in \(1.0 \mathrm{L}\) of \(1.0 \mathrm{M} \mathrm{NaCN}\) . b. Calculate the concentration of \(\mathrm{Br}^{-}\) at equilibrium. c. Calculate the concentration of \(\mathrm{CN}^{-}\) at equilibrium.
Problem 106
Consider a solution made by mixing \(500.0 \mathrm{mL}\) of \(4.0 \mathrm{M} \mathrm{NH}_{3}\) and \(500.0 \mathrm{mL}\) of \(0.40 \mathrm{M} \mathrm{AgNO}_{3} . \mathrm{Ag}^{+}\) reacts with \(\mathrm{NH}_{3}\) to form \(\mathrm{AgNH}_{3}^{+}\) and \(\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}:\) $$\mathrm{Ag}^{+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{AgNH}_{3}^{+}(a q) \qquad K_{1}=2.1 \times 10^{3}$$ $$\operatorname{AgNH}_{3}^{+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q) \quad K_{2}=8.2 \times 10^{3}$$ Determine the concentration of all species in solution.
Problem 107
a. Calculate the molar solubility of \(\mathrm{AgBr}\) in pure water. \(K_{\mathrm{sp}}\) for \(\mathrm{AgBr}\) is \(5.0 \times 10^{-13}\) . b. Calculate the molar solubility of \(\mathrm{AgBr}\) in \(3.0M\) \(\mathrm{NH}_{3} .\) The overall formation constant for \(\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}+\) is \(1.7 \times 10^{7}\) that is, $$\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \longrightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q) \quad K=1.7 \times 10^{7}$$ c. Compare the calculated solubilities from parts a and b. Explain any differences. d. What mass of \(\mathrm{AgBr}\) will dissolve in \(250.0 \mathrm{mL}\) of \(3.0 M\) \(\mathrm{NH}_{3}?\) e. What effect does adding \(\mathrm{HNO}_{3}\) have on the solubilities calculated in parts a and b?
Problem 108
Calculate the equilibrium concentrations of \(\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\) \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)^{2+}, \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}^{2+}, \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}^{2+},\) and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) in a solution prepared by mixing \(500.0 \mathrm{mL}\) of \(3.00M\) \(\mathrm{NH}_{3}\) with \(500.0 \mathrm{mL}\) of \(2.00 \times 10^{-3} \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\) . The step wise equilibria are $$\mathrm{Cu}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{CuNH}_{3}^{2+}(a q) \quad K_{1}=1.86 \times 10^{4}$$ $$\mathrm{CuNH}_{3}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}^{2+}(a q) \quad K_{2}=3.88 \times 10^{3}$$ $$\mathrm{Cu}\left(\mathrm{NH}_{2}\right)_{2}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{2}\right)_{3}^{2+}(a q) \quad K_{3}=1.00 \times 10^{3}$$ $$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{4}=1.55 \times 10^{2}$$
Problem 109
Calculate the solubility of \(\mathrm{AgCN}(s)\left(K_{\mathrm{sp}}=2.2 \times 10^{-12}\right)\) in a solution containing \(1.0 M\) \(\mathrm{H}^{+} .\left(K_{\mathrm{a}} \text { for } \mathrm{HCN} \text { is } 6.2 \times 10^{-10} .\right)\)
Problem 110
Calcium oxalate \(\left(\mathrm{CaC}_{2} \mathrm{O}_{4}\right)\) is relatively insoluble in water \(\left(K_{\mathrm{sp}}=2 \times 10^{-9}\right) .\) However, calcium oxalate is more soluble in acidic solution. How much more soluble is calcium oxalate in 0.10\(M \mathrm{H}^{+}\) than in pure water? In pure water, ignore the basic properties of \(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}.\)