Problem 84
A thin, uniform rod is bent into a square of side length \(a\). If the total mass is \(M\), find the moment of inertia about an axis through the center and perpendicular to the plane of the square. (\(Hint\): Use the parallel-axis theorem.)
Problem 85
A sphere with radius \(R =\) 0.200 m has density \(\rho\) that decreases with distance \(r\) from the center of the sphere according to \(r =\) 3.00 \(\times\) 103 kg/m\(^3 -\) (9.00 \(\times\) 103 kg/m\(^4\))\(r\). (a) Calculate the total mass of the sphere. (b) Calculate the moment of inertia of the sphere for an axis along a diameter.
Problem 86
The Crab Nebula is a cloud of glowing gas about 10 lightyears across, located about 6500 light-years from the earth (\(\textbf{Fig. P9.86}\)). It is the remnant of a star that underwent a \(supernova\) \(explosion\), seen on earth in 1054 A.D. Energy is released by the Crab Nebula at a rate of about 5 \(\times\) 10\(^3$$^1\) W, about 10\(^5\) times the rate at which the sun radiates energy. The Crab Nebula obtains its energy from the rotational kinetic energy of a rapidly spinning \(neutron\) \(star\) at its center. This object rotates once every 0.0331 s, and this period is increasing by 4.22 \(\times 10^{-13}\) s for each second of time that elapses. (a) If the rate at which energy is lost by the neutron star is equal to the rate at which energy is released by the nebula, find the moment of inertia of the neutron star. (b) Theories of supernovae predict that the neutron star in the Crab Nebula has a mass about 1.4 times that of the sun. Modeling the neutron star as a solid uniform sphere, calculate its radius in kilometers. (c) What is the linear speed of a point on the equator of the neutron star? Compare to the speed of light. (d) Assume that the neutron star is uniform and calculate its density. Compare to the density of ordinary rock (3000 kg/m\(^3\)) and to the density of an atomic nucleus (about 10\(^{17}\) kg/m\(^3\)). Justify the statement that a neutron star is essentially a large atomic nucleus.
Problem 91
On a compact disc (CD), music is coded in a pattern of tiny pits arranged in a track that spirals outward toward the rim of the disc. As the disc spins inside a CD player, the track is scanned at a constant \(linear\) speed of \(v =\) 1.25m/s. Because the radius of the track varies as it spirals outward, the angular speed of the disc must change as the CD is played. (See Exercise 9.20.) Let's see what angular acceleration is required to keep \(v\) constant. The equation of a spiral is \(r(\theta) = r_0 + \beta\theta\), where \(r_0\) is the radius of the spiral at \(\theta =\) 0 and \(\beta\) is a constant. On a CD, \(r_0\) is the inner radius of the spiral track. If we take the rotation direction of the CD to be positive, \(\beta\) must be positive so that \(r\) increases as the disc turns and \(\theta\) increases. (a) When the disc rotates through a small angle \(d\theta\), the distance scanned along the track is \(ds = rd\theta\). Using the above expression for \(r(\theta)\), integrate \(ds\) to find the total distance \(s\) scanned along the track as a function of the total angle \(\theta\) through which the disc has rotated. (b) Since the track is scanned at a constant linear speed \(v\), the distance s found in part (a) is equal to \(vt\). Use this to find \(\theta\) as a function of time. There will be two solutions for \(\theta\) ; choose the positive one, and explain why this is the solution to choose. (c) Use your expression for \(\theta(t)\) to find the angular velocity \(\omega_z\) and the angular acceleration \(\alpha_z\) as functions of time. Is \(\alpha_z\) constant? (d) On a CD, the inner radius of the track is 25.0 mm, the track radius increases by 1.55 mm per revolution, and the playing time is 74.0 min. Find \(r_0, \beta,\) and the total number of revolutions made during the playing time. (e) Using your results from parts (c) and (d), make graphs of \(\omega_z\) (in rad/s) versus \(t\) and \(\alpha_z\) (in rad/s\(^2\)) versus \(t\) between \(t =\) 0 and \(t =\) 74.0 min. \(\textbf{The Spinning eel.}\) American eels (\(Anguilla\) \(rostrata\)) are freshwater fish with long, slender bodies that we can treat as uniform cylinders 1.0 m long and 10 cm in diameter. An eel compensates for its small jaw and teeth by holding onto prey with its mouth and then rapidly spinning its body around its long axis to tear off a piece of flesh. Eels have been recorded to spin at up to 14 revolutions per second when feeding in this way. Although this feeding method is costly in terms of energy, it allows the eel to feed on larger prey than it otherwise could.
Problem 93
The eel is observed to spin at 14 spins per second clockwise, and 10 seconds later it is observed to spin at 8 spins per second counterclockwise. What is the magnitude of the eel's average angular acceleration during this time? (a) 6/10 rad/s\(^2\); (b) 6\(\pi\)/10 rad/s\(^2\); (c) 12\(\pi\)/10 rad/s\(^2\); (d) 44\(\pi\)/10 rad/s\(^2\).