Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 11

The rotating blade of a blender turns with constant angular acceleration 1.50 rad/s\(^2\). (a) How much time does it take to reach an angular velocity of 36.0 rad/s, starting from rest? (b) Through how many revolutions does the blade turn in this time interval?

Problem 13

A turntable rotates with a constant 2.25 rad/s\(^2\) angular acceleration. After 4.00 s it has rotated through an angle of 30.0 rad. What was the angular velocity of the wheel at the beginning of the 4.00-s interval?

Problem 14

A circular saw blade 0.200 m in diameter starts from rest. In 6.00 s it accelerates with constant angular acceleration to an angular velocity of 140 rad/s. Find the angular acceleration and the angle through which the blade has turned.

Problem 15

A high-speed flywheel in a motor is spinning at 500 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm. The power is off for 30.0 s, and during this time the flywheel slows due to friction in its axle bearings. During the time the power is off, the flywheel makes 200 complete revolutions. (a) At what rate is the flywheel spinning when the power comes back on? (b) How long after the beginning of the power failure would it have taken the flywheel to stop if the power had not come back on, and how many revolutions would the wheel have made during this time?

Problem 16

At \(t =\) 0 a grinding wheel has an angular velocity of 24.0 rad/s. It has a constant angular acceleration of 30.0 rad/s\(^2\) until a circuit breaker trips at \(t =\) 2.00 s. From then on, it turns through 432 rad as it coasts to a stop at constant angular acceleration. (a) Through what total angle did the wheel turn between \(t =\) 0 and the time it stopped? (b) At what time did it stop? (c) What was its acceleration as it slowed down?

Problem 17

A safety device brings the blade of a power mower from an initial angular speed of \(\omega_1\) to rest in 1.00 revolution. At the same constant acceleration, how many revolutions would it take the blade to come to rest from an initial angular speed \(\omega_3\) that was three times as great, \(\omega_3 = 3\omega_1\)?

Problem 20

A compact disc (CD) stores music in a coded pattern of tiny pits 10\(^-\)7 m deep. The pits are arranged in a track that spirals outward toward the rim of the disc; the inner and outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant \(linear\) speed of 1.25 m/s. (a) What is the angular speed of the CD when the innermost part of the track is scanned? The outermost part of the track? (b) The maximum playing time of a CD is 74.0 min. What would be the length of the track on such a maximum-duration CD if it were stretched out in a straight line? (c) What is the average angular acceleration of a maximum duration CD during its 74.0-min playing time? Take the direction of rotation of the disc to be positive.

Problem 21

A wheel of diameter 40.0 cm starts from rest and rotates with a constant angular acceleration of 3.00 rad/s\(^2\). Compute the radial acceleration of a point on the rim for the instant the wheel completes its second revolution from the relationship (a) \(a_{rad} = \omega^2r\) and (b) \(a_{rad} = v^2/r\)

Problem 22

You are to design a rotating cylindrical axle to lift 800-N buckets of cement from the ground to a rooftop 78.0 m above the ground. The buckets will be attached to a hook on the free end of a cable that wraps around the rim of the axle; as the axle turns, the buckets will rise. (a) What should the diameter of the axle be in order to raise the buckets at a steady 2.00 cm/s when it is turning at 7.5 rpm? (b) If instead the axle must give the buckets an upward acceleration of 0.400 m/s\(^2\), what should the angular acceleration of the axle be?

Problem 23

A flywheel with a radius of 0.300 m starts from rest and accelerates with a constant angular acceleration of 0.600 rad/s\(^2\). Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim (a) at the start; (b) after it has turned through 60.0\(^\circ\); (c) after it has turned through 120.0\(^\circ\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks