Problem 49
Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0250 mm wide. The transmitted light is viewed on a distant screen where the intensity at the center of the central bright fringe is 8.50 W/m\(^2\). (a) Find the maximum number of totally dark fringes on the screen, assuming the screen is large enough to show them all. (b) At what angle does the dark fringe that is most distant from the center occur? (c) What is the maximum intensity of the bright fringe that occurs immediately before the dark fringe in part (b)? Approximate the angle at which this fringe occurs by assuming it is midway between the angles to the dark fringes on either side of it.
Problem 51
A thin slit illuminated by light of frequency \(f\) produces its first dark band at \(\pm\)38.2\(^\circ\) in air. When the entire apparatus (slit, screen, and space in between) is immersed in an unknown transparent liquid, the slit's first dark bands occur instead at \(\pm\)21.6\(^\circ\). Find the refractive index of the liquid.
Problem 54
A slit 0.360 mm wide is illuminated by parallel rays of light that have a wavelength of 540 nm. The diffraction pattern is observed on a screen that is 1.20 m from the slit. The intensity at the center of the central maximum \((\theta = 0^\circ)\) is \(I_0\). (a) What is the distance on the screen from the center of the central maximum to the first minimum? (b) What is the distance on the screen from the center of the central maximum to the point where the intensity has fallen to \(I_0\)/2?
Problem 58
It has been proposed to use an array of infrared telescopes spread over thousands of kilometers of space to observe planets orbiting other stars. Consider such an array that has an effective diameter of 6000 km and observes infrared radiation at a wavelength of 10 \(\mu\)m. If it is used to observe a planet orbiting the star 70 Virginis, which is 59 light-years from our solar system, what is the size of the smallest details that the array might resolve on the planet? How does this compare to the diameter of the planet, which is assumed to be similar to that of Jupiter (1.40 \(\times\) 10\(^{5}\) km)? (Although the planet of 70 Virginis is thought to be at least 6.6 times more massive than Jupiter, its radius is probably not too different from that of Jupiter. Such large planets are thought to be composed primarily of gases, not rocky material, and hence can be greatly compressed by the mutual gravitational attraction of different parts of the planet.)
Problem 59
A diffraction grating has 650 slits>mm. What is the highest order that contains the entire visible spectrum? (The wavelength range of the visible spectrum is approximately 380-750 nm.)
Problem 62
The maximum resolution of the eye depends on the diameter of the opening of the pupil (a diffraction effect) and the size of the retinal cells. The size of the retinal cells (about 5.0 \(\mu\)m in diameter) limits the size of an object at the near point (25 cm) of the eye to a height of about 50 \(\mu\)m. (To get a reasonable estimate without having to go through complicated calculations, we shall ignore the effect of the fluid in the eye.) (a) Given that the diameter of the human pupil is about 2.0 mm, does the Rayleigh criterion allow us to resolve a 50-\(\mu\)m- tall object at 25 cm from the eye with light of wavelength 550 nm? (b) According to the Rayleigh criterion, what is the shortest object we could resolve at the 25-cm near point with light of wavelength 550 nm? (c) What angle would the object in part (b) subtend at the eye? Express your answer in minutes (60 min = 1\(^\circ\)), and compare it with the experimental value of about 1 min. (d) Which effect is more important in limiting the resolution of our eyes: diffraction or the size of the retinal cells?
Problem 64
Your physics study partner tells you that the width of the central bright band in a single-slit diffraction pattern is inversely proportional to the width of the slit. This means that the width of the central maximum increases when the width of the slit decreases. The claim seems counterintuitive to you, so you make measurements to test it. You shine monochromatic laser light with wavelength \(\lambda\) onto a very narrow slit of width \(a\) and measure the width \(w\) of the central maximum in the diffraction pattern that is produced on a screen 1.50 m from the slit. (By "width," you mean the distance on the screen between the two minima on either side of the central maximum.) Your measurements are given in the table. (a) If \(w\) is inversely proportional to \(a\), then the product \(aw\) is constant, independent of \(a\). For the data in the table, graph \(aw\) versus \(a\). Explain why \(aw\) is not constant for smaller values of \(a\). (b) Use your graph in part (a) to calculate the wavelength \(\lambda\) of the laser light. (c) What is the angular position of the first minimum in the diffraction pattern for (i) \(a\) = 0.78 \(\mu\)m and (ii) \(a\) = 15.60 \(\mu\)m?
Problem 66
(a) Consider an arrangement of \(N\) slits with a distance \(d\) between adjacent slits. The slits emit coherently and in phase at wavelength \(\lambda\). Show that at a time \(t\), the electric field at a distant point \(P\) is $$E_P(t) = E_0 cos(kR - \omega t) + E_0 cos(kR - \omega t + \phi)$$ $$+ E_0 cos(kR - \omega t + 2\phi) + . . .$$ $$+ E_0 cos(kR - \omega t + (N - 1)\phi)$$ where \(E_0\) is the amplitude at \(P\) of the electric field due to an individual slit, \(\phi = (2\pi d\) sin \(\theta)/\lambda\), \(\theta\) is the angle of the rays reaching \(P\) (as measured from the perpendicular bisector of the slit arrangement), and \(R\) is the distance from \(P\) to the most distant slit. In this problem, assume that \(R\) is much larger than \(d\). (b) To carry out the sum in part (a), it is convenient to use the complex-number relationship \(e^{iz} = cos z + i \space sin \space z\), where \(i = \sqrt{-1}\). In this expression, cos \(z\) is the \(real\) \(part\) of the complex number \(e^{iz}\), and sin \(z\) is its \(imaginary\) \(part\). Show that the electric field \(E_P(t)\) is equal to the real part of the complex quantity $$\sum _{n=0} ^{N-1} E_0 e^{i(kR-\omega t+n\phi)}$$ (c) Using the properties of the exponential function that \(e^Ae^B = e^{(A+B)}\) and \((e^A)^n = e^{nA}\), show that the sum in part (b) can be written as $$E_0 ( {e^{iN\phi} - 1 \over e^{i\phi} - 1} )e^{i(kR-\omega t)}$$ $$= E_0 ({e^{iN\phi/2} - e^{-iN\phi/2} \over e^{i\phi/2} - e^{-i\phi/2}} )e^{i[kR-\omega t+(N-1)\phi/2]}$$ Then, using the relationship \(e^{iz}\) = cos \(z\) + \(i\) sin \(z\), show that the (real) electric field at point \(P\) is $$E_P(t) = [E_0 {sin(N\phi/2) \over sin(\phi/2)} ] cos [kR - \omega t + (N - 1)\phi/2]$$ The quantity in the first square brackets in this expression is the amplitude of the electric field at \(P\). (d) Use the result for the electric-field amplitude in part (c) to show that the intensity at an angle \(\theta\) is $$I = I_0 [{ sin(N\phi/2) \over sin(\phi/2) }] ^2$$ where \(I_0\) is the maximum intensity for an individual slit. (e) Check the result in part (d) for the case \(N\) = 2. It will help to recall that sin 2\(A\) = 2 sin \(A\) cos \(A\). Explain why your result differs from Eq. (35.10), the expression for the intensity in two-source interference, by a factor of 4. (\(Hint\): Is I0 defined in the same way in both expressions?)
Problem 69
Why is visible light, which has much longer wavelengths than x rays do, used for Bragg reflection experiments on colloidal crystals? (a) The microspheres are suspended in a liquid, and it is more difficult for x rays to penetrate liquid than it is for visible light. (b) The irregular spacing of the microspheres allows the longerwavelength visible light to produce more destructive interference than can x rays. (c) The microspheres are much larger than atoms in a crystalline solid, and in order to get interference maxima at reasonably large angles, the wavelength must be much longer than the size of the individual scatterers. (d) The microspheres are spaced more widely than atoms in a crystalline solid, and in order to get interference maxima at reasonably large angles, the wavelength must be comparable to the spacing between scattering planes.
Problem 71
When the light is passed through the bottom of the sample container, the interference maximum is observed to be at 41\(^\circ\); when it is passed through the top, the corresponding maximum is at 37\(^\circ\). What is the best explanation for this observation? (a) The microspheres are more tightly packed at the bottom, because they tend to settle in the suspension. (b) The microspheres aremore tightly packed at the top, because they tend to float to the top of the suspension. (c) The increased pressure at the bottom makes the microspheres smaller there. (d) The maximum at the bottom corresponds to \(m\) = 2, whereas the maximum at the top corresponds to \(m\) = 1.