Problem 38
Monochromatic light with wavelength 490 nm passes through a circular aperture, and a diffraction pattern is observed on a screen that is 1.20 m from the aperture. If the distance on the screen between the first and second dark rings is 1.65 mm, what is the diameter of the aperture?
Problem 39
Two satellites at an altitude of 1200 km are separated by 28 km. If they broadcast 3.6-cm microwaves, what minimum receiving-dish diameter is needed to resolve (by Rayleigh's criterion) the two transmissions?
Problem 40
If you can read the bottom row of your doctor's eye chart, your eye has a resolving power of 1 arcminute, equal to \(1\over{60}\) degree. If this resolving power is diffraction limited, to what effective diameter of your eye's optical system does this correspond? Use Rayleigh's criterion and assume \(\lambda\) = 550 nm.
Problem 41
The VLBA (Very Long Baseline Array) uses a number of individual radio telescopes to make one unit having an equivalent diameter of about 8000 km. When this radio telescope is focusing radio waves of wavelength 2.0 cm, what would have to be the diameter of the mirror of a visible-light telescope focusing light of wavelength 550 nm so that the visible-light telescope has the same resolution as the radio telescope?
Problem 43
The Hubble Space Telescope has an aperture of 2.4 m and focuses visible light (380-750 nm). The Arecibo radio telescope in Puerto Rico is 305 m (1000 ft) in diameter (it is built in a mountain valley) and focuses radio waves of wavelength 75 cm. (a) Under optimal viewing conditions, what is the smallest crater that each of these telescopes could resolve on our moon? (b) If the Hubble Space Telescope were to be converted to surveillance use, what is the highest orbit above the surface of the earth it could have and still be able to resolve the license plate (not the letters, just the plate) of a car on the ground? Assume optimal viewing conditions, so that the resolution is diffraction limited.
Problem 44
A wildlife photographer uses a moderate telephoto lens of focal length 135 mm and maximum aperture \(f/\)4.00 to photograph a bear that is 11.5 m away. Assume the wavelength is 550 nm. (a) What is the width of the smallest feature on the bear that this lens can resolve if it is opened to its maximum aperture? (b) If, to gain depth of field, the photographer stops the lens down to \(f/\)22.0, what would be the width of the smallest resolvable feature on the bear?
Problem 45
You are asked to design a space telescope for earth orbit. When Jupiter is 5.93 \(\times\) 10\(^8\) km away (its closest approach to the earth), the telescope is to resolve, by Rayleigh's criterion, features on Jupiter that are 250 km apart. What minimum-diameter mirror is required? Assume a wavelength of 500 nm.
Problem 46
Coherent monochromatic light of wavelength l passes through a narrow slit of width \(a\), and a diffraction pattern is observed on a screen that is a distance \(x\) from the slit. On the screen, the width \(w\) of the central diffraction maximum is twice the distance \(x\). What is the ratio \(a/ \lambda\) of the width of the slit to the wavelength of the light?
Problem 47
Although we have discussed single-slit diffraction only for a slit, a similar result holds when light bends around a straight, thin object, such as a strand of hair. In that case, \(a\) is the width of the strand. From actual laboratory measurements on a human hair, it was found that when a beam of light of wavelength 632.8 nm was shone on a single strand of hair, and the diffracted light was viewed on a screen 1.25 m away, the first dark fringes on either side of the central bright spot were 5.22 cm apart. How thick was this strand of hair?
Problem 48
A loudspeaker with a diaphragm that vibrates at 960 Hz is traveling at 80.0 m/s directly toward a pair of holes in a very large wall. The speed of sound in the region is 344 m/s. Far from the wall, you observe that the sound coming through the openings first cancels at \(\pm11.4^\circ\) with respect to the direction in which the speaker is moving. (a) How far apart are the two openings? (b) At what angles would the sound first cancel if the source stopped moving?