Problem 1
Two coils have mutual inductance \(M = 3.25 \times 10^{-4}\) H. The current \(i_1\) in the first coil increases at a uniform rate of 830 A/s. (a) What is the magnitude of the induced emf in the second coil? Is it constant? (b) Suppose that the current described is in the second coil rather than the first. What is the magnitude of the induced emf in the first coil?
Problem 2
Two coils are wound around the same cylindrical form, like the coils in Example 30.1. When the current in the first coil is decreasing at a rate of -0.242 A/s, the induced emf in the second coil has magnitude \(1.65 \times 10^{-3}\) V. (a) What is the mutual inductance of the pair of coils? (b) If the second coil has 25 turns, what is the flux through each turn when the current in the first coil equals 1.20 A? (c) If the current in the second coil increases at a rate of 0.360 A/s, what is the magnitude of the induced emf in the first coil?
Problem 3
A 10.0-cm-long solenoid of diameter 0.400 cm is wound uniformly with 800 turns. A second coil with 50 turns is wound around the solenoid at its center. What is the mutual inductance of the combination of the two coils?
Problem 4
A solenoidal coil with 25 turns of wire is wound tightly around another coil with 300 turns (see Example 30.1). The inner solenoid is 25.0 cm long and has a diameter of 2.00 cm. At a certain time, the current in the inner solenoid is 0.120 A and is increasing at a rate of \(1.75 \times 10^3\) A/s. For this time, calculate: (a) the average magnetic flux through each turn of the inner solenoid; (b) the mutual inductance of the two solenoids; (c) the emf induced in the outer solenoid by the changing current in the inner solenoid.
Problem 5
Two toroidal solenoids are wound around the same form so that the magnetic field of one passes through the turns of the other. Solenoid 1 has 700 turns, and solenoid 2 has 400 turns. When the current in solenoid 1 is 6.52 A, the average flux through each turn of solenoid 2 is 0.0320 Wb. (a) What is the mutual inductance of the pair of solenoids? (b) When the current in solenoid 2 is 2.54 A, what is the average flux through each turn of solenoid 1?
Problem 6
A toroidal solenoid with mean radius \(r\) and cross-sectional area \(A\) is wound uniformly with \(N_1\) turns. A second toroidal solenoid with \(N_2\) turns is wound uniformly on top of the first, so that the two solenoids have the same cross-sectional area and mean radius. (a) What is the mutual inductance of the two solenoids? Assume that the magnetic field of the first solenoid is uniform across the cross section of the two solenoids. (b) If \(N_1 = 500\) turns, \(N_2 = 300\) turns, \(r = 10.0\) cm, and \(A = 0.800 \, \mathrm{cm}^2\), what is the value of the mutual inductance?
Problem 7
A 2.50-mH toroidal solenoid has an average radius of 6.00 cm and a cross- sectional area of 2.00 cm\(^2\). (a) How many coils does it have? (Make the same assumption as in Example 30.3.) (b) At what rate must the current through it change so that a potential difference of 2.00 V is developed across its ends?
Problem 8
A toroidal solenoid has 500 turns, cross-sectional area 6.25 cm\(^2\), and mean radius 4.00 cm. (a) Calculate the coil's selfinductance. (b) If the current decreases uniformly from 5.00 A to 2.00 A in 3.00 ms, calculate the self- induced emf in the coil. (c) The current is directed from terminal \(a\) of the coil to terminal \(b\). Is the direction of the induced emf from \(a\) to \(b\) or from \(b\) to \(a\)?
Problem 9
At the instant when the current in an inductor is increasing at a rate of 0.0640 A/s, the magnitude of the self-induced emf is 0.0160 V. (a) What is the inductance of the inductor? (b) If the inductor is a solenoid with 400 turns, what is the average magnetic flux through each turn when the current is 0.720 A?
Problem 10
When the current in a toroidal solenoid is changing at a rate of 0.0260 A/s, the magnitude of the induced emf is 12.6 mV. When the current equals 1.40 A, the average flux through each turn of the solenoid is 0.00285 Wb. How many turns does the solenoid have?