Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 13

A toroidal solenoid has mean radius 12.0 cm and crosssectional area 0.600 cm\(^2\). (a) How many turns does the solenoid have if its inductance is 0.100 mH? (b) What is the resistance of the solenoid if the wire from which it is wound has a resistance per unit length of 0.0760 \(\Omega\)/m?

Problem 14

A long, straight solenoid has 800 turns. When the current in the solenoid is 2.90 A, the average flux through each turn of the solenoid is \(3.25 \times 10^{-3}\) Wb. What must be the magnitude of the rate of change of the current in order for the self-induced emf to equal 6.20 mV?

Problem 15

(a) A long, straight solenoid has \(N\) turns, uniform cross sectional area \(A\), and length \(l\). Show that the inductance of this solenoid is given by the equation \(L = \mu_0 AN^2/l\). Assume that the magnetic field is uniform inside the solenoid and zero outside. (Your answer is approximate because \(B\) is actually smaller at the ends than at the center. For this reason, your answer is actually an upper limit on the inductance.) (b) A metallic laboratory spring is typically 5.00 cm long and 0.150 cm in diameter and has 50 coils. If you connect such a spring in an electric circuit, how much self-inductance must you include for it if you model it as an ideal solenoid?

Problem 16

An inductor used in a dc power supply has an inductance of 12.0 H and a resistance of 180 \(\Omega\). It carries a current of 0.500 A. (a) What is the energy stored in the magnetic field? (b) At what rate is thermal energy developed in the inductor? (c) Does your answer to part (b) mean that the magnetic-field energy is decreasing with time? Explain.

Problem 17

An air-filled toroidal solenoid has a mean radius of 15.0 cm and a cross- sectional area of 5.00 cm\(^2\). When the current is 12.0 A, the energy stored is 0.390 J. How many turns does the winding have?

Problem 18

An air-filled toroidal solenoid has 300 turns of wire, a mean radius of 12.0 cm, and a cross-sectional area of 4.00 cm\(^2\). If the current is 5.00 A, calculate: (a) the magnetic field in the solenoid; (b) the self inductance of the solenoid; (c) the energy stored in the magnetic field; (d) the energy density in the magnetic field. (e) Check your answer for part (d) by dividing your answer to part (c) by the volume of the solenoid.

Problem 19

A solenoid 25.0 cm long and with a cross-sectional area of 0.500 cm\(^2\) contains 400 turns of wire and carries a current of 80.0 A. Calculate: (a) the magnetic field in the solenoid; (b) the energy density in the magnetic field if the solenoid is filled with air; (c) the total energy contained in the coil's magnetic field (assume the field is uniform); (d) the inductance of the solenoid.

Problem 20

It has been proposed to use large inductors as energy storage devices. (a) How much electrical energy is converted to light and thermal energy by a 150-W light bulb in one day? (b) If the amount of energy calculated in part (a) is stored in an inductor in which the current is 80.0 A, what is the inductance?

Problem 21

In a proton accelerator used in elementary particle physics experiments, the trajectories of protons are controlled by bending magnets that produce a magnetic field of 4.80 T. What is the magnetic-field energy in a 10.0-cm\(^3\) volume of space where \(B = 4.80\) T?

Problem 22

It is proposed to store \(1.00 \, \mathrm{kW} \cdot \mathrm{h} = 3.60 \times 10^6\) J of electrical energy in a uniform magnetic field with magnitude 0.600 T. (a) What volume (in vacuum) must the magnetic field occupy to store this amount of energy? (b) If instead this amount of energy is to be stored in a volume (in vacuum) equivalent to a cube 40.0 cm on a side, what magnetic field is required?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks