Problem 83
Cars \(A\) and \(B\) travel in a straight line. The distance of \(A\) from the starting point is given as a function of time by \(x_A(t) = \alpha{t} + \beta{t}^2\), with \(\alpha =\) 2.60 m/s and \(\beta =\) 1.20 m/s\(^2\). The distance of \(B\) from the starting point is \(x_B(t) = \gamma{t}^2 - \delta{t}^3\), with \(\gamma =\) 2.80 m/s\(^2\) and \(\delta =\) 0.20 m/s\(^3\). (a) Which car is ahead just after the two cars leave the starting point? (b) At what time(s) are the cars at the same point? (c) At what time(s) is the distance from \(A\) to \(B\) neither increasing nor decreasing? (d) At what time(s) do \(A\) and \(B\) have the same acceleration?
Problem 85
In a physics lab experiment, you release a small steel ball at various heights above the ground and measure the ball's speed just before it strikes the ground. You plot your data on a graph that has the release height (in meters) on the vertical axis and the square of the final speed (in m\(^2\)/s\(^2\)) on the horizontal axis. In this graph your data points lie close to a straight line. (a) Using \(g\) = 9.80 m/s\(^2\) and ignoring the effect of air resistance, what is the numerical value of the slope of this straight line? (Include the correct units.) The presence of air resistance reduces the magnitude of the downward acceleration, and the effect of air resistance increases as the speed of the object increases. You repeat the experiment, but this time with a tennis ball as the object being dropped. Air resistance now has a noticeable effect on the data. (b) Is the final speed for a given release height higher than, lower than, or the same as when you ignored air resistance? (c) Is the graph of the release height versus the square of the final speed still a straight line? Sketch the qualitative shape of the graph when air resistance is present.
Problem 87
In the vertical jump, an athlete starts from a crouch and jumps upward as high as possible. Even the best athletes spend little more than 1.00 s in the air (their "hang time"). Treat the athlete as a particle and let \(y_{max}\) be his maximum height above the floor. To explain why he seems to hang in the air, calculate the ratio of the time he is above \(y_{max}\)/2 to the time it takes him to go from the floor to that height. Ignore air resistance
Problem 88
A student is running at her top speed of 5.0 m/s to catch a bus, which is stopped at the bus stop. When the student is still 40.0 m from the bus, it starts to pull away, moving with a constant acceleration of 0.170 m/s\(^2\). (a) For how much time and what distance does the student have to run at 5.0 m/s before she overtakes the bus? (b) When she reaches the bus, how fast is the bus traveling? (c) Sketch an \(x-t\) graph for both the student and the bus. Take \(x =\) 0 at the initial position of the student. (d) The equations you used in part (a) to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue their specified motions. Explain the significance of this second solution. How fast is the bus traveling at this point? (e) If the student's top speed is 3.5 m/s, will she catch the bus? (f) What is the \(minimum\) speed the student must have to just catch up with the bus? For what time and what distance does she have to run in that case?
Problem 89
A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof 1.00 s later. Ignore air resistance. (a) If the height of the building is 20.0 m, what must the initial speed of the first ball be if both are to hit the ground at the same time? On the same graph, sketch the positions of both balls as a function of time, measured from when the first ball is thrown. Consider the same situation, but now let the initial speed \(v_0\) of the first ball be given and treat the height \(h\) of the building as an unknown. (b) What must the height of the building be for both balls to reach the ground at the same time if (i) \(v_0\) is 6.0 m/s and (ii) \(v_0\) is 9.5 m/s? (c) If \(v_0\) is greater than some value \(v_{max}\), no value of h exists that allows both balls to hit the ground at the same time. Solve for \(v_{max}\). The value \(v_{max}\) has a simple physical interpretation. What is it? (d) If \(v_0\) is less than some value \(v_{min}\), no value of h exists that allows both balls to hit the ground at the same time. Solve for \(v_{min}\). The value \(v_{min}\) also has a simple physical interpretation. What is it?
Problem 90
If the contraction of the left ventricle lasts 250 ms and the speed of blood flow in the aorta (the large artery leaving the heart) is 0.80 m/s at the end of the contraction, what is the average acceleration of a red blood cell as it leaves the heart? (a) 310 ms\(^2\); (b) 31 m/s\(^2\); (c) 3.2 m/s\(^2\); (d) 0.32 m/s\(^2\).