Problem 73
Sam heaves a 16-lb shot straight up, giving it a constant upward acceleration from rest of 35.0 m/s\(^2\) for 64.0 cm. He releases it 2.20 m above the ground. Ignore air resistance. (a) What is the speed of the shot when Sam releases it? (b) How high above the ground does it go? (c) How much time does he have to get out of its way before it returns to the height of the top of his head, 1.83 m above the ground?
Problem 74
A flowerpot falls off a windowsill and passes the window of the story below. Ignore air resistance. It takes the pot 0.380 s to pass from the top to the bottom of this window, which is 1.90 m high. How far is the top of the window below the windowsill from which the flowerpot fell?
Problem 75
Two stones are thrown vertically upward from the ground, one with three times the initial speed of the other. (a) If the faster stone takes 10 s to return to the ground, how long will it take the slower stone to return? (b) If the slower stone reaches a maximum height of \(H\), how high (in terms of \(H\)) will the faster stone go? Assume free fall.
Problem 76
In the first stage of a two-stage rocket, the rocket is fired from the launch pad starting from rest but with a constant acceleration of 3.50 m/s\(^2\) upward. At 25.0 s after launch, the second stage fires for 10.0 s, which boosts the rocket's velocity to 132.5 m/s upward at 35.0 s after launch. This firing uses up all of the fuel, however, so after the second stage has finished firing, the only force acting on the rocket is gravity. Ignore air resistance. (a) Find the maximum height that the stage-two rocket reaches above the launch pad. (b) How much time after the end of the stage-two firing will it take for the rocket to fall back to the launch pad? (c) How fast will the stage-two rocket be moving just as it reaches the launch pad?
Problem 77
During your summer internship for an aerospace company, you are asked to design a small research rocket. The rocket is to be launched from rest from the earth's surface and is to reach a maximum height of 960 m above the earth's surface. The rocket's engines give the rocket an upward acceleration of 16.0 m/s\(^2\) during the time \(T\) that they fire. After the engines shut off, the rocket is in free fall. Ignore air resistance. What must be the value of \(T\) in order for the rocket to reach the required altitude?
Problem 78
A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help." When she has fallen for 3.0 s, she hears the echo of her shout from the valley floor below. The speed of sound is 340 m/s. (a) How tall is the cliff? (b) If we ignore air resistance, how fast will she be moving just before she hits the ground? (Her actual speed will be less than this, due to air resistance.)
Problem 79
A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.0 m/s\(^2\). Secret agent Austin Powers jumps on just as the helicopter lifts off the ground. After the two men struggle for 10.0 s, Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance. (a) What is the maximum height above ground reached by the helicopter? (b) Powers deploys a jet pack strapped on his back 7.0 s after leaving the helicopter, and then he has a constant downward acceleration with magnitude 2.0 m/s\(^2\). How far is Powers above the ground when the helicopter crashes into the ground?
Problem 80
You are climbing in the High Sierra when you suddenly find yourself at the edge of a fog-shrouded cliff. To find the height of this cliff, you drop a rock from the top; 8.00 s later you hear the sound of the rock hitting the ground at the foot of the cliff. (a) If you ignore air resistance, how high is the cliff if the speed of sound is 330 m/s? (b) Suppose you had ignored the time it takes the sound to reach you. In that case, would you have overestimated or underestimated the height of the cliff? Explain.
Problem 81
An object is moving along the \(x\)-axis. At \(t =\) 0 it has velocity \(v_{0x}\) = 20.0 m/s. Starting at time \(t =\) 0 it has acceleration \(a_x = -Ct\), where \(C\) has units of m/s\(^3\). (a) What is the value of \(C\) if the object stops in 8.00 s after \(t =\) 0? (b) For the value of \(C\) calculated in part (a), how far does the object travel during the 8.00 s?
Problem 82
A ball is thrown straight up from the ground with speed \(v_0\). At the same instant, a second ball is dropped from rest from a height \(H\), directly above the point where the first ball was thrown upward. There is no air resistance. (a) Find the time at which the two balls collide. (b) Find the value of \(H\) in terms of \(v_0\) and \(g\) such that at the instant when the balls collide, the first ball is at the highest point of its motion.