Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 3

Two moles of an ideal gas are compressed in a cylinder at a constant temperature of 65.0\(^\circ\)C until the original pressure has tripled. (a) Sketch a \(pV\)-diagram for this process. (b) Calculate the amount of work done.

Problem 5

During the time 0.305 mol of an ideal gas undergoes an isothermal compression at 22.0\(^\circ\)C, 392 J of work is done on it by the surroundings. (a) If the final pressure is 1.76 atm, what was the initial pressure? (b) Sketch a \(pV\)-diagram for the process.

Problem 6

A gas undergoes two processes. In the first, the volume remains constant at 0.200 m\(^3\) and the pressure increases from 2.00 \(\times\) 10\(^5\) Pa to 5.00 \(\times\) 10\(^5\) Pa. The second process is a compression to a volume of 0.120 m\(^3\) at a constant pressure of 5.00 \(\times\) 10\(^5\) Pa. (a) In a pV-diagram, show both processes. (b) Find the total work done by the gas during both processes.

Problem 9

A gas in a cylinder expands from a volume of 0.110 m\(^3\) to 0.320 m\(^3\). Heat flows into the gas just rapidly enough to keep the pressure constant at 1.65 \(\times\) 10\(^5\) Pa during the expansion. The total heat added is 1.15 \(\times\) 10\(^5\) J. (a) Find the work done by the gas. (b) Find the change in internal energy of the gas. (c) Does it matter whether the gas is ideal? Why or why not?

Problem 10

Five moles of an ideal monatomic gas with an initial temperature of 127\(^\circ\)C expand and, in the process, absorb 1500 J of heat and do 2100 J of work. What is the final temperature of the gas?

Problem 12

A gas in a cylinder is held at a constant pressure of 1.80 \(\times\) 10\(^5\) \(Pa\) and is cooled and compressed from 1.70 m\(^3\) to 1.20 m\(^3\). The internal energy of the gas decreases by 1.40 \(\times\) 10\(^5\) J. (a) Find the work done by the gas. (b) Find the absolute value of the heat flow, [\(Q\)] , into or out of the gas, and state the direction of the heat flow. (c) Does it matter whether the gas is ideal? Why or why not?

Problem 14

When water is boiled at a pressure of 2.00 atm, the heat of vaporization is 2.20 \(\times\) 10\(^6\) J/kg and the boiling point is 120\(^\circ\)C. At this pressure, 1.00 kg of water has a volume of 1.00 \(\times\) 10\(^{-3}\) m\(^3\), and 1.00 kg of steam has a volume of 0.824 m\(^3\). (a) Compute the work done when 1.00 kg of steam is formed at this temperature. (b) Compute the increase in internal energy of the water.

Problem 16

During an isothermal compression of an ideal gas, 410 J of heat must be removed from the gas to maintain constant temperature. How much work is done by the gas during the process?

Problem 17

A cylinder contains 0.250 mol of carbon dioxide (\(CO_2\)) gas at a temperature of 27.0\(^\circ\)C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 1.00 atm on the gas. The gas is heated until its temperature increases to 127.0\(^\circ\)C. Assume that the CO\(_2\) may be treated as an ideal gas. (a) Draw a \(pV\)-diagram for this process. (b) How much work is done by the gas in this process? (c) On what is this work done? (d) What is the change in internal energy of the gas? (e) How much heat was supplied to the gas? (f) How much work would have been done if the pressure had been 0.50 atm?

Problem 19

In an experiment to simulate conditions inside an automobile engine, 0.185 mol of air at 780 K and 3.00 \(\times\) 10\(^6\) Pa is contained in a cylinder of volume 40.0 cm\(^3\). Then 645 J of heat is transferred to the cylinder. (a) If the volume of the cylinder is constant while the heat is added, what is the final temperature of the air? Assume that the air is essentially nitrogen gas, and use the data in Table 19.1 even though the pressure is not low. Draw a \(pV\)-diagram for this process. (b) If instead the volume of the cylinder is allowed to increase while the pressure remains constant, repeat part (a).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks