Problem 41
Two moles of an ideal monatomic gas go through the cycle \(abc\). For the complete cycle, 800 J of heat flows out of the gas. Process \(ab\) is at constant pressure, and process \(bc\) is at constant volume. States \(a\) and \(b\) have temperatures \(T_a\) = 200 K and \(T_b\) = 300 K. (a) Sketch the \(pV\)-diagram for the cycle. (b) What is the work \(W\) for the process \(ca\)?
Problem 45
Starting with 2.50 mol of N\(_2\) gas (assumed to be ideal) in a cylinder at 1.00 atm and 20.0\(^\circ\)C, a chemist first heats the gas at constant volume, adding 1.36 \(\times\) 10\(^4\) J of heat, then continues heating and allows the gas to expand at constant pressure to twice its original volume. Calculate (a) the final temperature of the gas; (b) the amount of work done by the gas; (c) the amount of heat added to the gas while it was expanding; (d) the change in internal energy of the gas for the whole process.
Problem 46
Nitrogen gas in an expandable container is cooled from 50.0\(^\circ\)C to 10.0\(^\circ\)C with the pressure held constant at 3.00 \(\times\) 10\(^5\) Pa. The total heat liberated by the gas is 2.50 \(\times\) 10\(^4\) J. Assume that the gas may be treated as ideal. Find (a) the number of moles of gas; (b) the change in internal energy of the gas; (c) the work done by the gas. (d) How much heat would be liberated by the gas for the same temperature change if the volume were constant?
Problem 47
A cylinder with a frictionless, movable piston like that shown in Fig. 19.5 contains a quantity of helium gas. Initially the gas is at 1.00 \(\times\) 10\(^5\) Pa and 300 K and occupies a volume of 1.50 L. The gas then undergoes two processes. In the first, the gas is heated and the piston is allowed to move to keep the temperature at 300 K. This continues until the pressure reaches 2.50 \(\times\) 10\(^4\) Pa. In the second process, the gas is compressed at constant pressure until it returns to its original volume of 1.50 L. Assume that the gas may be treated as ideal. (a) In a \(pV\)-diagram, show both processes. (b) Find the volume of the gas at the end of the first process, and the pressure and temperature at the end of the second process. (c) Find the total work done by the gas during both processes. (d) What would you have to do to the gas to return it to its original pressure and temperature?
Problem 50
A large research balloon containing \(2.00 \times 10^{3} \mathrm{~m}^{3}\) of helium gas at 1.00 atm and a temperature of \(15.0^{\circ} \mathrm{C}\) rises rapidly from ground level to an altitude at which the atmospheric pressure is only 0.900 atm (Fig. \(\mathbf{P} 19.50\) ). Assume the helium behaves like an ideal gas and the balloon's ascent is too rapid to permit much heat exchange with the surrounding air. (a) Calculate the volume of the gas at the higher altitude. (b) Calculate the temperature of the gas at the higher altitude. (c) What is the change in internal energy of the helium as the balloon rises to the higher altitude?
Problem 52
A certain ideal gas has molar heat capacity at constant volume \(C_V\) . A sample of this gas initially occupies a volume \(V_0\) at pressure \(p_0\) and absolute temperature \(T_0\) . The gas expands isobarically to a volume \(2V_0\) and then expands further adiabatically to a final volume \(4V_0\) . (a) Draw a \(pV\)-diagram for this sequence of processes. (b) Compute the total work done by the gas for this sequence of processes. (c) Find the final temperature of the gas. (d) Find the absolute value of the total heat flow \(Q\) into or out of the gas for this sequence of processes, and state the direction of heat flow.
Problem 54
A cylinder with a piston contains 0.250 mol of oxygen at 2.40 \(\times\) 10\(^5\) Pa and 355 K. The oxygen may be treated as an ideal gas. The gas first expands isobarically to twice its original volume. It is then compressed isothermally back to its original volume, and finally it is cooled isochorically to its original pressure. (a) Show the series of processes on a \(pV\)-diagram. Compute (b) the temperature during the isothermal compression; (c) the maximum pressure; (d) the total work done by the piston on the gas during the series of processes.
Problem 56
A cylinder with a piston contains 0.150 mol of nitrogen at 1.80 \(\times\) 10\(^5\) Pa and 300 K. The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. (a) Show the series of processes in a \(pV\)-diagram. (b) Compute the temperatures at the beginning and end of the adiabatic expansion. (c) Compute the minimum pressure.
Problem 58
In a cylinder, 1.20 mol of an ideal monatomic gas, initially at 3.60 \(\times\) 10\(^5\) Pa and 300 K, expands until its volume triples. Compute the work done by the gas if the expansion is (a) isothermal; (b) adiabatic; (c) isobaric. (d) Show each process in a \(pV\)-diagram. In which case is the absolute value of the work done by the gas greatest? Least? (e) In which case is the absolute value of the heat transfer greatest? Least? (f) In which case is the absolute value of the change in internal energy of the gas greatest? Least?
Problem 62
The power output of an automobile engine is directly proportional to the mass of air that can be forced into the volume of the engine's cylinders to react chemically with gasoline. Many cars have a \(turbocharger\), which compresses the air before it enters the engine, giving a greater mass of air per volume. This rapid, essentially adiabatic compression also heats the air. To compress it further, the air then passes through an \(intercooler\) in which the air exchanges heat with its surroundings at essentially constant pressure. The air is then drawn into the cylinders. In a typical installation, air is taken into the turbocharger at atmospheric pressure (1.01 \(\times\) 10\(^5\) Pa), density \(\rho\) = 1.23 kg/m\(^3\), and temperature 15.0\(^\circ\)C. It is compressed adiabatically to 1.45 \(\times\) 10\(^5\) Pa. In the intercooler, the air is cooled to the original temperature of 15.0\(^\circ\)C at a constant pressure of 1.45 \(\times\) 10\(^5\) Pa. (a) Draw a \(pV\)-diagram for this sequence of processes. (b) If the volume of one of the engine's cylinders is 575 cm\(^3\), what mass of air exiting from the intercooler will fill the cylinder at 1.45 \(\times\) 10\(^5\) Pa? Compared to the power output of an engine that takes in air at 1.01 \(\times\) 10\(^5\) Pa at 15.0\(^\circ\)C, what percentage increase in power is obtained by using the turbocharger and intercooler? (c) If the intercooler is not used, what mass of air exiting from the turbocharger will fill the cylinder at 1.45 \(\times\) 10\(^5\) Pa? Compared to the power output of an engine that takes in air at 1.01 \(\times\) 10\(^5\) Pa at 15.0\(^\circ\)C, what percentage increase in power is obtained by using the turbocharger alone?