Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 61

BIO Conduction Through the Skin. The blood plays an important role in removing heat from the body by bringing this energy directly to the surface where it can radiate away. Nevertheless, this heat must still travel through the skin before it can radiate away. Assume that the blood is brought to the bottom layer of skin at 37.0\(^\circ\)C and that the outer surface of the skin is at 30.0\(^\circ\)C. Skin varies in thickness from 0.50 mm to a few millimeters on the palms and soles, so assume an average thickness of 0.75 mm. A 165-lb, 6-ft-tall person has a surface area of about 2.0 m\(^2\) and loses heat at a net rate of 75 W while resting. On the basis of our assumptions, what is the thermal conductivity of this person’s skin?

Problem 62

A long rod, insulated to prevent heat loss along its sides, is in perfect thermal contact with boiling water (at atmospheric pressure) at one end and with an ice-water mixture at the other (Fig. E17.62). The rod consists of a 1.00-m section of copper (one end in boiling water) joined end to end to a length \(L_2\) of steel (one end in the ice-water mixture). Both sections of the rod have crosssectional areas of 4.00 cm\(^2\). The temperature of the copper- steel junction is 65.0\(^\circ\)C after a steady state has been set up. (a) How much heat per second flows from the boiling water to the ice-water mixture? (b) What is the length \(L_2\) of the steel section?

Problem 64

You are asked to design a cylindrical steel rod 50.0 cm long, with a circular cross section, that will conduct 190.0 J/s from a furnace at 400.0\(^\circ\)C to a container of boiling water under 1 atmosphere. What must the rod’s diameter be?

Problem 65

A picture window has dimensions of 1.40 m \(\times\) 2.50 mand is made of glass 5.20 mm thick. On a winter day, the temperature of the outside surface of the glass is -20.0\(^\circ\)C, while the temperature of the inside surface is a comfortable 19.5\(^\circ\)C. (a) At what rate is heat being lost through the window by conduction? (b) At what rate would heat be lost through the window if you covered it with a 0.750-mm-thick layer of paper (thermal conductivity 0.0500 W/m \(\cdot\) K)?

Problem 66

What is the rate of energy radiation per unit area of a blackbody at (a) 273 K and (b) 2730 K?

Problem 67

A spherical pot contains 0.75 L of hot coffee (essentially water) at an initial temperature of 95\(^\circ\)C. The pot has an emissivity of 0.60, and the surroundings are at 20.0\(^\circ\)C. Calculate the coffee’s rate of heat loss by radiation.

Problem 68

The emissivity of tungsten is 0.350. A tungsten sphere with radius 1.50 cm is suspended within a large evacuated enclosure whose walls are at 290.0 K. What power input is required to maintain the sphere at 3000.0 K if heat conduction along the supports is ignored?

Problem 69

The operating temperature of a tungsten filament in an incandescent light bulb is 2450 K, and its emissivity is 0.350. Find the surface area of the filament of a 150-W bulb if all the electrical energy consumed by the bulb is radiated by the filament as electromagnetic waves. (Only a fraction of the radiation appears as visible light.)

Problem 70

The hot glowing surfaces of stars emit energy in the form of electromagnetic radiation. It is a good approximation to assume e = 1 for these surfaces. Find the radii of the following stars (assumed to be spherical): (a) Rigel, the bright blue star in the constellation Orion, which radiates energy at a rate of \(2.7 \times 10{^3}{^2} W\) and has surface temperature 11,000 K; (b) Procyon B (visible only using a telescope), which radiates energy at a rate of \(2.1 \times 10{^2}{^3} W\) and has surface temperature 10,000 K. (c) Compare your answers to the radius of the earth, the radius of the sun, and the distance between the earth and the sun. (Rigel is an example of a supergiant star, and Procyon B is an example of a white dwarf star.)

Problem 71

A Foucault pendulum consists of a brass sphere with a diameter of 35.0 cm suspended from a steel cable 10.5 m long (both measurements made at 20.0\(^\circ\)C). Due to a design oversight, the swinging sphere clears the floor by a distance of only 2.00 mm when the temperature is 20.0\(^\circ\)C. At what temperature will the sphere begin to brush the floor?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks