Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 19

A machinist bores a hole of diameter 1.35 cm in a steel plate that is at 25.0\(^\circ\)C. What is the cross-sectional area of the hole (a) at 25.0\(^\circ\)C and (b) when the temperature of the plate is increased to 175\(^\circ\)C? Assume that the coefficient of linear expansion remains constant over this temperature range.

Problem 23

An aluminum tea kettle with mass 1.10 kg and containing 1.80 kg of water is placed on a stove. If no heat is lost to the surroundings, how much heat must be added to raise the temperature from 20.0\(^\circ\)C to 85.0\(^\circ\)C?

Problem 24

In an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 200-W electric immersion heater in 0.320 kg of water. (a) How much heat must be added to the water to raise its temperature from 20.0\(^\circ\)C to 80.0\(^\circ\)C? (b) How much time is required? Assume that all of the heater’s power goes into heating the water.

Problem 25

BIO While running, a 70-kg student generates thermal energy at a rate of 1200 W. For the runner to maintain a constant body temperature of 37\(^\circ\)C, this energy must be removed by perspiration or other mechanisms. If these mechanisms failed and the energy could not flow out of the student’s body, for what amount of time could a student run before irreversible body damage occurred? (Note: Protein structures in the body are irreversibly damaged if body temperature rises to 44\(^\circ\)C or higher. The specific heat of a typical human body is 3480 J / kg \(\cdot\) K, slightly less than that of water. The difference is due to the presence of protein, fat, and minerals, which have lower specific heats.)

Problem 26

In very cold weather a significant mechanism for heat loss by the human body is energy expended in warming the air taken into the lungs with each breath. (a) On a cold winter day when the temperature is -20\(^\circ\)C, what amount of heat is needed to warm to body temperature (37\(^\circ\)C) the 0.50 L of air exchanged with each breath? Assume that the specific heat of air is 1020 J / kg \(\cdot\) K and that 1.0 L of air has mass \(1.3 \times 10{^-}{^3} kg\). (b) How much heat is lost per hour if the respiration rate is 20 breaths per minute?

Problem 27

You are given a sample of metal and asked to determine its specific heat. You weigh the sample and find that its weight is 28.4 N. You carefully add \(1.25 \times 10{^4}\) J of heat energy to the sample and find that its temperature rises 18.0 C\(^\circ\). What is the sample's specific heat?

Problem 28

Conventional hot-water heaters consist of a tank of water maintained at a fixed temperature. The hot water is to be used when needed. The drawbacks are that energy is wasted because the tank loses heat when it is not in use and that you can run out of hot water if you use too much. Some utility companies are encouraging the use of on-demand water heaters (also known as flash heaters), which consist of heating units to heat the water as you use it. No water tank is involved, so no heat is wasted. A typical household shower flow rate is 2.5 gal/min (9.46 L/min) with the tap water being heated from 50\(^\circ\)F (10\(^\circ\)C) to 120\(^\circ\)F (49\(^\circ\)C) by the on-demand heater. What rate of heat input (either electrical or from gas) is required to operate such a unit, assuming that all the heat goes into the water?

Problem 29

CP While painting the top of an antenna 225 m in height, a worker accidentally lets a 1.00-L water bottle fall from his lunchbox. The bottle lands in some bushes at ground level and does not break. If a quantity of heat equal to the magnitude of the change in mechanical energy of the water goes into the water, what is its increase in temperature?

Problem 30

A 25,000-kg subway train initially traveling at 15.5 m/s slows to a stop in a station and then stays there long enough for its brakes to cool. The station's dimensions are 65.0 m long by 20.0 m wide by 12.0 m high. Assuming all the work done by the brakes in stopping the train is transferred as heat uniformly to all the air in the station, by how much does the air temperature in the station rise? Take the density of the air to be 1.20 kg/m\(^3\) and its specific heat to be 1020 J /kg \(\cdot\) K.

Problem 32

A technician measures the specific heat of an unidentified liquid by immersing an electrical resistor in it. Electrical energy is converted to heat transferred to the liquid for 120 s at a constant rate of 65.0 W. The mass of the liquid is 0.780 kg, and its temperature increases from 18.55\(^\circ\)C to 22.54\(^\circ\)C. (a) Find the average specific heat of the liquid in this temperature range. Assume that negligible heat is transferred to the container that holds the liquid and that no heat is lost to the surroundings. (b) Suppose that in this experiment heat transfer from the liquid to the container or surroundings cannot be ignored. Is the result calculated in part (a) an overestimate or an underestimate of the average specific heat? Explain.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks