Problem 1
Convert the following Celsius temperatures to Fahrenheit: (a) -62.8\(^\circ\)C, the lowest temperature ever recorded in North America (February 3, 1947, Snag, Yukon); (b) 56.7\(^\circ\)C, the highest temperature ever recorded in the United States (July 10, 1913, Death Valley, California); (c) 31.1\(^\circ\)C, the world’s highest average annual temperature (Lugh Ferrandi, Somalia).
Problem 2
BIO Temperatures in Biomedicine. (a) Normal body temperature. The average normal body temperature measured in the mouth is 310 K. What would Celsius and Fahrenheit thermometers read for this temperature? (b) Elevated body temperature. During very vigorous exercise, the body’s temperature can go as high as 40\(^\circ\)C. What would Kelvin and Fahrenheit thermometers read for this temperature? (c) Temperature difference in the body. The surface temperature of the body is normally about 7 C\(^\circ\) lower than the internal temperature. Express this temperature difference in kelvins and in Fahrenheit degrees. (d) Blood storage. Blood stored at 4.0\(^\circ\)C lasts safely for about 3 weeks, whereas blood stored at -160\(^\circ\)C lasts for 5 years. Express both temperatures on the Fahrenheit and Kelvin scales. (e) Heat stroke. If the body’s temperature is above 105\(^\circ\)F for a prolonged period, heat stroke can result. Express this temperature on the Celsius and Kelvin scales.
Problem 3
(a) On January 22, 1943, the temperature in Spearfish, South Dakota, rose from -4.0\(^\circ\)F to 45.0\(^\circ\)F in just 2 minutes. What was the temperature change in Celsius degrees? (b) The temperature in Browning, Montana, was 44.0\(^\circ\)F on January 23, 1916. The next day the temperature plummeted to -56\(^\circ\)F. What was the temperature change in Celsius degrees?
Problem 4
(a) Calculate the one temperature at which Fahrenheit and Celsius thermometers agree with each other. (b) Calculate the one temperature at which Fahrenheit and Kelvin thermometers agree with each other.
Problem 5
You put a bottle of soft drink in a refrigerator and leave it until its temperature has dropped 10.0 K. What is its temperature change in (a) F\(^\circ\) and (b) C\(^\circ\)?
Problem 6
Convert the following Kelvin temperatures to the Celsius and Fahrenheit scales: (a) the midday temperature at the surface of the moon (400 K); (b) the temperature at the tops of the clouds in the atmosphere of Saturn (95 K); (c) the temperature at the center of the sun \((1.55 \times 10{^7} K)\).
Problem 8
A constant-volume gas thermometer registers an absolute pressure corresponding to 325 mm of mercury when in contact with water at the triple point. What pressure does it read when in contact with water at the normal boiling point?
Problem 10
Like the Kelvin scale, the Rankine scale is an absolute temperature scale: Absolute zero is zero degrees Rankine (0\(^\circ\)R). However, the units of this scale are the same size as those of the Fahrenheit scale rather than the Celsius scale. What is the numerical value of the triple-point temperature of water on the Rankine scale?
Problem 13
A U.S. penny has a diameter of 1.9000 cm at 20.0\(^\circ\)C. The coin is made of a metal alloy (mostly zinc) for which the coefficient of linear expansion is \(2.6 \times 10{^-}{^5} K{^-}{^1}\). What would its diameter be on a hot day in Death Valley (48.0\(^\circ\)C)? On a cold night in the mountains of Greenland (-53\(^\circ\)C)?
Problem 17
A glass flask whose volume is 1000.00 cm\(^3\) at 0.0\(^\circ\)C is completely filled with mercury at this temperature. When flask and mercury are warmed to 55.0\(^\circ\)C, 8.95 cm\(^3\) of mercury overflow. If the coefficient of volume expansion of mercury is \(18.0 \times 10{^-}{^5} K{^-}{^1}\), compute the coefficient of volume expansion of the glass.