Problem 70
A police siren of frequency \(f_{siren}\) is attached to a vibrating platform. The platform and siren oscillate up and down in simple harmonic motion with amplitude \(A_p\) and frequency \(f_p\). (a) Find the maximum and minimum sound frequencies that you would hear at a position directly above the siren. (b) At what point in the motion of the platform is the maximum frequency heard? The minimum frequency? Explain.
Problem 71
A turntable 1.50 m in diameter rotates at 75 rpm. Two speakers, each giving off sound of wavelength 31.3 cm, are attached to the rim of the table at opposite ends of a diameter. A listener stands in front of the turntable. (a) What is the greatest beat frequency the listener will receive from this system? (b) Will the listener be able to distinguish individual beats?
Problem 73
A long tube contains air at a pressure of 1.00 atm and a temperature of 77.0\(^\circ\)C. The tube is open at one end and closed at the other by a movable piston. A tuning fork that vibrates with a frequency of 500 Hz is placed near the open end. Resonance is produced when the piston is at distances 18.0 cm, 55.5 cm, and 93.0 cm from the open end. (a) From these values, what is the speed of sound in air at 77.0\(^\circ\)C? (b) From the result of part (a), what is the value of \(\gamma\)? (c) These results show that a displacement antinode is slightly outside the open end of the tube. How far outside is it?
Problem 76
\(\textbf{Longitudinal Waves on a Spring.}\) A long spring such as a Slinky\(^{\mathrm{TM}}\) is often used to demonstrate longitudinal waves. (a) Show that if a spring that obeys Hooke’s law has mass \(m\), length \(L\), and force constant \(k'\), the speed of longitudinal waves on the spring is \(v = L\sqrt{ k'/m}\) (see Section 16.2). (b) Evaluate \(v\) for a spring with \(m =\) 0.250 kg, \(L =\) 2.00 m, and \(k' =\) 1.50 N\(/\)m. \(\textbf{ULTRASOUND IMAGING}\). A typical ultrasound transducer used for medical diagnosis produces a beam of ultrasound with a frequency of 1.0 MHz. The beam travels from the transducer through tissue and partially reflects when it encounters different structures in the tissue. The same transducer that produces the ultrasound also detects the reflections. The transducer emits a short pulse of ultrasound and waits to receive the reflected echoes before emitting the next pulse. By measuring the time between the initial pulse and the arrival of the reflected signal, we can use the speed of ultrasound in tissue, 1540 m/s, to determine the distance from the transducer to the structure that produced the reflection. As the ultrasound beam passes through tissue, the beam is attenuated through absorption. Thus deeper structures return weaker echoes. A typical attenuation in tissue is \(-\)100 dB/m \(\cdot\) MHz; in bone it is \(-\)500 dB/m \(\cdot\) MHz. In determining attenuation, we take the reference intensity to be the intensity produced by the transducer.
Problem 80
In some applications of ultrasound, such as its use on cranial tissues, large reflections from the surrounding bones can produce standing waves. This is of concern because the large pressure amplitude in an antinode can damage tissues. For a frequency of 1.0 MHz, what is the distance between antinodes in tissue? (a) 0.38 mm; (b) 0.75 mm; (c) 1.5 mm; (d) 3.0 mm.