Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 58

The shock-wave cone created by a space shuttle at one instant during its reentry into the atmosphere makes an angle of 58.0\(^\circ\) with its direction of motion. The speed of sound at this altitude is 331 m/s. (a) What is the Mach number of the shuttle at this instant, and (b) how fast (in m/s and in mi/h) is it traveling relative to the atmosphere? (c) What would be its Mach number and the angle of its shock-wave cone if it flew at the same speed but at low altitude where the speed of sound is 344 m/s ?

Problem 59

A soprano and a bass are singing a duet. While the soprano sings an A-sharp at 932 Hz, the bass sings an A-sharp but three octaves lower. In this concert hall, the density of air is 1.20 kg/m\(^3\) and its bulk modulus is 1.42 \(\times\) 10\(^5\) Pa. In order for their notes to have the same sound intensity level, what must be (a) the ratio of the pressure amplitude of the bass to that of the soprano and (b) the ratio of the displacement amplitude of the bass to that of the soprano? (c) What displacement amplitude (in m and in nm) does the soprano produce to sing her A-sharp at 72.0 dB?

Problem 60

The sound from a trumpet radiates uniformly in all directions in 20\(^\circ\)C air. At a distance of 5.00 m from the trumpet the sound intensity level is 52.0 dB. The frequency is 587 Hz. (a) What is the pressure amplitude at this distance? (b) What is the displacement amplitude? (c) At what distance is the sound intensity level 30.0 dB?

Problem 61

A person is playing a small flute 10.75 cm long, open at one end and closed at the other, near a taut string having a fundamental frequency of 600.0 Hz. If the speed of sound is 344.0 m/s, for which harmonics of the flute will the string resonate? In each case, which harmonic of the string is in resonance?

Problem 63

An organ pipe has two successive harmonics with frequencies 1372 and 1764 Hz. (a) Is this an open or a stopped pipe? Explain. (b) What two harmonics are these? (c) What is the length of the pipe?

Problem 64

The frequency of the note F\(_4\) is 349 Hz. (a) If an organ pipe is open at one end and closed at the other, what length must it have for its fundamental mode to produce this note at 20.0\(^\circ\)C? (b) At what air temperature will the frequency be 370 Hz, corresponding to a rise in pitch from F to F-sharp? (Ignore the change in length of the pipe due to the temperature change.)

Problem 66

A bat flies toward a wall, emitting a steady sound of frequency 1.70 kHz. This bat hears its own sound plus the sound reflected by the wall. How fast should the bat fly in order to hear a beat frequency of 8.00 Hz?

Problem 67

The sound source of a ship's sonar system operates at a frequency of 18.0 kHz. The speed of sound in water (assumed to be at a uniform 20\(^\circ\)C) is 1482 m/s. (a) What is the wavelength of the waves emitted by the source? (b) What is the difference in frequency between the directly radiated waves and the waves reflected from a whale traveling directly toward the ship at 4.95 m/s ? The ship is at rest in the water.

Problem 68

A 2.00-MHz sound wave travels through a pregnant woman's abdomen and is reflected from the fetal heart wall of her unborn baby. The heart wall is moving toward the sound receiver as the heart beats. The reflected sound is then mixed with the transmitted sound, and 72 beats per second are detected. The speed of sound in body tissue is 1500 m/s. Calculate the speed of the fetal heart wall at the instant this measurement is made.

Problem 69

Horseshoe bats (genus \(Rhinolophus\)) emit sounds from their nostrils and then listen to the frequency of the sound reflected from their prey to determine the prey's speed. (The "horseshoe" that gives the bat its name is a depression around the nostrils that acts like a focusing mirror, so that the bat emits sound in a narrow beam like a flashlight.) A \(Rhinolophus\) flying at speed \(v_{bat}\) emits sound of frequency \(f_{bat}\); the sound it hears reflected from an insect flying toward it has a higher frequency \(f_{refl}\). (a) Show that the speed of the insect is $$vinsect = v\Bigg[\frac{f_{refl}(v - v_{bat}) - f_{bat}(v + v_{bat})}{f_{refl}(v - v_{bat}) + f_{bat}(v + v_{bat})}\Bigg] $$ where \(v\) is the speed of sound. (b) If \(f_{bat} =\) 80.7 kHz, \(f_{refl} =\) 83.5 kHz, and \(v_{bat} =\) 3.9 m/s, calculate the speed of the insect.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks