Problem 70
In seawater, a life preserver with a volume of 0.0400 m\(^3\) will support a 75.0-kg person (average density 980 kg/m\(^3\)), with 20% of the person's volume above the water surface when the life preserver is fully submerged. What is the density of the material composing the life preserver?
Problem 71
A closed and elevated vertical cylindrical tank with diameter 2.00 m contains water to a depth of 0.800 m. A worker accidently pokes a circular hole with diameter 0.0200 m in the bottom of the tank. As the water drains from the tank, compressed air above the water in the tank maintains a gauge pressure of 5.00 \(\times\) 10\(^3\) Pa at the surface of the water. Ignore any effects of viscosity. (a) Just after the hole is made, what is the speed of the water as it emerges from the hole? What is the ratio of this speed to the efflux speed if the top of the tank is open to the air? (b) How much time does it take for all the water to drain from the tank? What is the ratio of this time to the time it takes for the tank to drain if the top of the tank is open to the air?
Problem 74
Assume that crude oil from a supertanker has density 750 kg/m\(^3\). The tanker runs aground on a sandbar. To refloat the tanker, its oil cargo is pumped out into steel barrels, each of which has a mass of 15.0 kg when empty and holds 0.120 m\(^3\) of oil. You can ignore the volume occupied by the steel from which the barrel is made. (a) If a salvage worker accidentally drops a filled, sealed barrel overboard, will it float or sink in the seawater? (b) If the barrel floats, what fraction of its volume will be above the water surface? If it sinks, what minimum tension would have to be exerted by a rope to haul the barrel up from the ocean floor? (c) Repeat parts (a) and (b) if the density of the oil is 910 kg/m\(^3\) and the mass of each empty barrel is 32.0 kg.
Problem 75
A cubical block of density \({\rho_B}\) and with sides of length \(L\) floats in a liquid of greater density \({\rho_L}\). (a) What fraction of the block's volume is above the surface of the liquid? (b) The liquid is denser than water (density \({\rho_W}\)) and does not mix with it. If water is poured on the surface of that liquid, how deep must the water layer be so that the water surface just rises to the top of the block? Express your answer in terms of \(L\), \({\rho_B}\), \({\rho_L}\), and \({\rho_W}\). (c) Find the depth of the water layer in part (b) if the liquid is mercury, the block is made of iron, and \(L\) \(=\) 10.0 cm.
Problem 76
A barge is in a rectangular lock on a freshwater river. The lock is 60.0 m long and 20.0 m wide, and the steel doors on each end are closed. With the barge floating in the lock, a 2.50 \(\times\) 10\(^6\) N load of scrap metal is put onto the barge. The metal has density 7200 kg/m\(^3\). (a) When the load of scrap metal, initially on the bank, is placed onto the barge, what vertical distance does the water in the lock rise? (b) The scrap metal is now pushed overboard into the water. Does the water level in the lock rise, fall, or remain the same? If it rises or falls, by what vertical distance does it change?
Problem 84
A liquid flowing from a vertical pipe has a definite shape as it flows from the pipe. To get the equation for this shape, assume that the liquid is in free fall once it leaves the pipe. Just as it leaves the pipe, the liquid has speed \(\upsilon$$_0\) and the radius of the stream of liquid is \({r_0}\). (a) Find an equation for the speed of the liquid as a function of the distance \(y\) it has fallen. Combining this with the equation of continuity, find an expression for the radius of the stream as a function of \(y\). (b) If water flows out of a vertical pipe at a speed of 1.20 m/s, how far below the outlet will the radius be one-half the original radius of the stream?
Problem 87
The Environmental Protection Agency is investigating an abandoned chemical plant. A large, closed cylindrical tank contains an unknown liquid. You must determine the liquid's density and the height of the liquid in the tank (the vertical distance from the surface of the liquid to the bottom of the tank). To maintain various values of the gauge pressure in the air that is above the liquid in the tank, you can use compressed air. You make a small hole at the bottom of the side of the tank, which is on a concrete platform\(-\)so the hole is 50.0 cm above the ground. The table gives your measurements of the horizontal distance \(R\) that the initially horizontal stream of liquid pouring out of the tank travels before it strikes the ground and the gauge pressure \({p_g}\) of the air in the tank. (a) Graph \({R^2}\) as a function of \({p_g}\). Explain why the data points fall close to a straight line. Find the slope and intercept of that line. (b) Use the slope and intercept found in part (a) to calculate the height \(h\) (in meters) of the liquid in the tank and the density of the liquid (in kg/m\(^3\)). Use \(g\) \(=\) 9.80 m/s\(^2\). Assume that the liquid is nonviscous and that the hole is small enough compared to the tank's diameter so that the change in h during the measurements is very small.