Problem 17
There is a maximum depth at which a diver can breathe through a snorkel tube (\(\textbf{Fig. E12.17}\) ) because as the depth increases, so does the pressure difference, which tends to collapse the diver's lungs. Since the snorkel connects the air in the lungs to the atmosphere at the surface, the pressure inside the lungs is atmospheric pressure. What is the external internal pressure difference when the diver's lungs are at a depth of 6.1 m (about 20 ft)? Assume that the diver is in freshwater. (A scuba diver breathing from compressed air tanks can operate at greater depths than can a snorkeler, since the pressure of the air inside the scuba diver's lungs increases to match the external pressure of the water.)
Problem 18
The lower end of a long plastic straw is immersed below the surface of the water in a plastic cup. An average person sucking on the upper end of the straw can pull water into the straw to a vertical height of 1.1 m above the surface of the water in the cup. (a) What is the lowest gauge pressure that the average person can achieve inside his lungs? (b) Explain why your answer in part (a) is negative.
Problem 20
A tall cylinder with a cross-sectional area 12.0 cm\(^2\) is partially filled with mercury; the surface of the mercury is 8.00 cm above the bottom of the cylinder. Water is slowly poured in on top of the mercury, and the two fluids don't mix. What volume of water must be added to double the gauge pressure at the bottom of the cylinder?
Problem 22
A closed container is partially filled with water. Initially, the air above the water is at atmospheric pressure (1.01 \(\times\) 10\(^5\) Pa) and the gauge pressure at the bottom of the water is 2500 Pa. Then additional air is pumped in, increasing the pressure of the air above the water by 1500 Pa. (a) What is the gauge pressure at the bottom of the water? (b) By how much must the water level in the container be reduced, by drawing some water out through a valve at the bottom of the container, to return the gauge pressure at the bottom of the water to its original value of 2500 Pa? The pressure of the air above the water is maintained at 1500 Pa above atmospheric pressure.
Problem 24
The piston of a hydraulic automobile lift is 0.30 m in diameter. What gauge pressure, in pascals, is required to lift a car with a mass of 1200 kg? Also express this pressure in atmospheres.
Problem 25
The surface pressure on Venus is 92 atm, and the acceleration due to gravity there is 0.894g. In a future exploratory mission, an upright cylindrical tank of benzene is sealed at the top but still pressurized at 92 atm just above the benzene. The tank has a diameter of 1.72 m, and the benzene column is 11.50 m tall. Ignore any effects due to the very high temperature on Venus. (a) What total force is exerted on the inside surface of the bottom of the tank? (b) What force does the Venusian atmosphere exert on the outside surface of the bottom of the tank? (c) What total inward force does the atmosphere exert on the vertical walls of the tank?
Problem 26
A rock has mass 1.80 kg. When the rock is suspended from the lower end of a string and totally immersed in water, the tension in the string is 12.8 N. What is the smallest density of a liquid in which the rock will float?
Problem 27
A 950-kg cylindrical can buoy floats vertically in seawater. The diameter of the buoy is 0.900 m. Calculate the additional distance the buoy will sink when an 80.0-kg man stands on top of it.
Problem 28
A slab of ice floats on a freshwater lake. What minimum volume must the slab have for a 65.0-kg woman to be able to stand on it without getting her feet wet?
Problem 29
An ore sample weighs 17.50 N in air. When the sample is suspended by a light cord and totally immersed in water, the tension in the cord is 11.20 N. Find the total volume and the density of the sample.