Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 48

The Earth is held together by its own gravity. But it is also a charge-bearing conductor. a) The Earth can be regarded as a conducting sphere of radius \(6371 \mathrm{~km},\) with electric field \(\vec{E}=(-150 . \mathrm{V} / \mathrm{m}) \hat{r}\) at its surface, where \(\hat{r}\) is a unit vector directed radially outward. Calculate the total electrostatic potential energy associated with the Earth's electric charge and field. b) The Earth has gravitational potential energy, akin to the electrostatic potential energy. Calculate this energy, treating the Earth as a uniform solid sphere. (Hint: \(d U=-(G m / r) d m\). c) Use the results of parts (a) and (b) to address this question: To what extent do electrostatic forces affect the structure of the Earth?

Problem 52

Thermocoax is a type of coaxial cable used for high-frequency filtering in cryogenic quantum computing experiments. Its stainless steel shield has an inner diameter of \(0.35 \mathrm{~mm},\) and its Nichrome conductor has a diameter of \(0.17 \mathrm{~mm}\). Nichrome is used because its resistance doesn't change much in going from room temperature to near absolute zero. The insulating dielectric is magnesium oxide \((\mathrm{MgO}),\) which has a dielectric constant of \(9.7 .\) Calculate the capacitance per meter of Thermocoax.

Problem 53

A parallel plate capacitor has square plates of side \(L=\) \(10.0 \mathrm{~cm}\) and a distance \(d=1.00 \mathrm{~cm}\) between the plates. Of the space between the plates, \(\frac{1}{3}\) is filled with a dielectric with dielectric constant \(\kappa_{1}=20.0 .\) The remaining \(\frac{4}{5}\) of the space is filled with a different dielectric with \(\kappa_{2}=5.00 .\) Find the capacitance of the capacitor.

Problem 56

A dielectric slab with thickness \(d\) and dielectric constant \(\kappa=2.31\) is inserted in a parallel place capacitor that has been charged by a \(110 .-\mathrm{V}\) battery and having area \(A=\) \(100, \mathrm{~cm}^{2},\) and separation distance \(d=2.50 \mathrm{~cm}\). a) Find the capacitance, \(C,\) the potential difference, \(V,\) the electric field, \(E,\) the total charge stored on the capacitor \(Q\), and electric potential energy stored in the capacitor, \(U\), before the dielectric material is inserted. b) Find \(C, V, E, Q,\) and \(U\) when the dielectric slab has been inserted and the battery is still connected. c) Find \(C, V, E, Q\) and \(U\) when the dielectric slab is in place and the battery is disconnected.

Problem 57

A parallel plate capacitor has a capacitance of \(120 .\) pF and a plate area of \(100 . \mathrm{cm}^{2}\). The space between the plates is filled with mica whose dielectric constant is \(5.40 .\) The plates of the capacitor are kept at \(50.0 \mathrm{~V}\) a) What is the strength of the electric field in the mica? b) What is the amount of free charge on the plates? c) What is the amount of charge induced on the mica?

Problem 58

Design a parallel plate capacitor with a capacitance of \(47.0 \mathrm{pF}\) and a capacity of \(7.50 \mathrm{nC}\). You have available conducting plates, which can be cut to any size, and Plexiglas sheets, which can be cut to any size and machined to any thickness. Plexiglas has a dielectric constant of 3.40 and a dielectric strength of \(4.00 \cdot 10^{7} \mathrm{~V} / \mathrm{m}\). You must make your capacitor as compact as possible. Specify all relevant dimensions. Ignore any fringe field at the edges of the capacitor plates.

Problem 59

A parallel plate capacitor consisting of a pair of rectangular plates, each measuring \(1.00 \mathrm{~cm}\) by \(10.0 \mathrm{~cm},\) with a separation between the plates of \(0.100 \mathrm{~mm},\) is charged by a power supply at a potential difference of \(1.00 \cdot 10^{3} \mathrm{~V}\). The power supply is then removed, and without being discharged, the capacitor is placed in a vertical position over a container holding de-ionized water, with the short sides of the plates in contact with the water, as shown in the figure. Using energy considerations, show that the water will rise between the plates. Neglecting other effects, determine the system of equations that can be used to calculate the height to which the water rises between the plates. You do not have to solve the system.

Problem 60

Two circular metal plates of radius \(0.61 \mathrm{~m}\) and thickness \(7.1 \mathrm{~mm}\) are used in a parallel plate capacitor. A gap of 2.1 mm is left between the plates, and half of the space (a semicircle) between the plates is filled with a dielectric for which \(\kappa=11.1\) and the other half is filled with air. What is the capacitance of this capacitor?

Problem 61

Considering the dielectric strength of air, what is the maximum amount of charge that can be stored on the plates of a capacitor that are a distance of \(15 \mathrm{~mm}\) apart and have an area of \(25 \mathrm{~cm}^{2}\) ?

Problem 63

A capacitor with a vacuum between its plates is connected to a battery and then the gap is filled with Mylar. By what percentage is its energy-storing capacity increased?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks