Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 28

A spherical capacitor is made from two thin concentric conducting shells. The inner shell has radius \(r_{1}\), and the outer shell has radius \(r_{2}\). What is the fractional difference in the capacitances of this spherical capacitor and a parallel plate capacitor made from plates that have the same area as the inner sphere and the same separation \(d=r_{2}-r_{1}\) between plates?

Problem 29

Calculate the capacitance of the Earth. Treat the Earth as an isolated spherical conductor of radius \(6371 \mathrm{~km}\).

Problem 30

Two concentric metal spheres are found to have a potential difference of \(900 . \mathrm{V}\) when a charge of \(6.726 \cdot 10^{-8} \mathrm{C}\) is applied to them. The radius of the outer sphere is \(0.210 \mathrm{~m}\). What is the radius of the inner sphere?

Problem 31

A capacitor consists of two parallel plates, but one of them can move relative to the other as shown in the figure. Air fills the space between the plates, and the capacitance is \(32.0 \mathrm{pF}\) when the separation between plates is \(d=0.500 \mathrm{~cm} .\) a) A battery with potential difference \(V=9.0 \mathrm{~V}\) is connected to the plates. What is the charge distribution, \(\sigma\), on the left plate? What are the capacitance, \(C^{\prime},\) and charge distribution, \(\sigma^{\prime},\) when \(d\) is changed to \(0.250 \mathrm{~cm} ?\) b) With \(d=0.500 \mathrm{~cm}\), the battery is disconnected from the plates. The plates are then moved so that \(d=0.250 \mathrm{~cm}\) What is the potential difference \(V^{\prime},\) between the plates?

Problem 32

Determine all the values of equivalent capacitance you can create using any combination of three identical capacitors with capacitance \(C\).

Problem 33

A large parallel plate capacitor with plates that are square with side length \(1.00 \mathrm{~cm}\) and are separated by a distance of \(1.00 \mathrm{~mm}\) is dropped and damaged. Half of the areas of the two plates are pushed closer together to a distance of \(0.500 \mathrm{~mm}\). What is the capacitance of the damaged capacitor?

Problem 39

Fifty parallel plate capacitors are connected in series. The distance between the plates is \(d\) for the first capacitor, \(2 d\) for the second capacitor, \(3 d\) for the third capacitor, and so on. The area of the plates is the same for all the capacitors. Express the equivalent capacitance of the whole set in terms of \(C_{1}\) (the capacitance of the first capacitor).

Problem 42

The capacitor in an automatic external defibrillator is charged to \(7.5 \mathrm{kV}\) and stores \(2400 \mathrm{~J}\) of energy. What is its capacitance?

Problem 44

The potential difference across two capacitors in series is \(120 . \mathrm{V}\). The capacitances are \(C_{1}=1.00 \cdot 10^{3} \mu \mathrm{F}\) and \(C_{2}=1.50 \cdot 10^{3} \mu \mathrm{F}\) a) What is the total capacitance of this pair of capacitors? b) What is the charge on each capacitor? c) What is the potential difference across each capacitor? d) What is the total energy stored by the capacitors?

Problem 46

A \(4.00 \cdot 10^{3}-n F\) parallel plate capacitor is connected to a \(12.0-\mathrm{V}\) battery and charged. a) What is the charge \(Q\) on the positive plate of the capacitor? b) What is the electric potential energy stored in the capacitor? The \(4.00 \cdot 10^{3}-\mathrm{nF}\) capacitor is then disconnected from the \(12.0-\mathrm{V}\) battery and used to charge three uncharged capacitors, a \(100 .-n F\) capacitor, a \(200 .-\mathrm{nF}\) capacitor, and a \(300 .-\mathrm{nF}\) capacitor, connected in series. c) After charging, what is the potential difference across each of the four capacitors? d) How much of the electrical energy stored in the \(4.00 \cdot 10^{3}-\mathrm{nF}\) capacitor was transferred to the other three capacitors?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks