Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 4

Matrices \(A\) and \(B\) are given. Compute \((A B)^{-1}\) and \(B^{-1} A^{-1}\). $$ A=\left[\begin{array}{ll} 2 & 4 \\ 2 & 5 \end{array}\right], \quad B=\left[\begin{array}{ll} 2 & 2 \\ 6 & 5 \end{array}\right] $$

Problem 4

Matrices \(A\) and \(B\) are given. Solve the matrix equation \(A X=B\). $$ \begin{array}{l} A=\left[\begin{array}{cc} -3 & -6 \\ 4 & 0 \end{array}\right] \\ B=\left[\begin{array}{cc} 48 & -30 \\ 0 & -8 \end{array}\right] \end{array} $$

Problem 4

Vectors \(\vec{x}\) and \(\vec{y}\) are given. Sketch \(\vec{x}, \vec{y}, \vec{x}+\vec{y},\) and \(\vec{x}-\vec{y}\) on the same Cartesian axes. $$ \vec{x}=\left[\begin{array}{l} 2 \\ 0 \end{array}\right], \vec{y}=\left[\begin{array}{l} 1 \\ 3 \end{array}\right] $$

Problem 4

Row and column vectors \(\vec{u}\) and \(\vec{v}\) are defined. Find the product \(\vec{u} \vec{v},\) where possible. $$ \vec{u}=\left[\begin{array}{ll} 0.6 & 0.8 \end{array}\right] \quad \vec{v}=\left[\begin{array}{l} 0.6 \\ 0.8 \end{array}\right] $$

Problem 5

A matrix \(A\) and vectors \(\vec{b}, \vec{u}\) and \(\vec{v}\) are given. Verify that \(\vec{u}\) and \(\vec{v}\) are both solutions to the equation \(A \vec{x}=\vec{b} ;\) that is, show that \(A \vec{u}=A \vec{v}=\vec{b}\). $$ \begin{array}{l} A=\left[\begin{array}{cccc} 0 & -3 & -1 & -3 \\ -4 & 2 & -3 & 5 \end{array}\right], \\ \vec{b}=\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \vec{u}=\left[\begin{array}{c} 11 \\ 4 \\ -12 \\ 0 \end{array}\right], \\ \vec{v}=\left[\begin{array}{c} 9 \\ -12 \\ 0 \\ 12 \end{array}\right] \end{array} $$

Problem 5

Matrices \(A\) and \(B\) are given below. Simplify the given expression. $$ A=\left[\begin{array}{cc} 1 & -1 \\ 7 & 4 \end{array}\right] \quad B=\left[\begin{array}{cc} -3 & 2 \\ 5 & 9 \end{array}\right] $$ $$ 3(A-B)+B $$

Problem 5

Matrices \(A\) and \(B\) are given. Solve the matrix equation \(A X=B\). $$ \begin{array}{l} A=\left[\begin{array}{ll} -1 & -2 \\ -2 & -3 \end{array}\right] \\ B=\left[\begin{array}{lll} 13 & 4 & 7 \\ 22 & 5 & 12 \end{array}\right] \end{array} $$

Problem 5

Row and column vectors \(\vec{u}\) and \(\vec{v}\) are defined. Find the product \(\vec{u} \vec{v},\) where possible. $$ \vec{u}=\left[\begin{array}{lll} 1 & 2 & -1 \end{array}\right] \vec{v}=\left[\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right] $$

Problem 6

A matrix \(A\) and vectors \(\vec{b}, \vec{u}\) and \(\vec{v}\) are given. Verify that \(\vec{u}\) and \(\vec{v}\) are both solutions to the equation \(A \vec{x}=\vec{b} ;\) that is, show that \(A \vec{u}=A \vec{v}=\vec{b}\). $$ \begin{array}{l} A=\left[\begin{array}{cccc} 0 & -3 & -1 & -3 \\ -4 & 2 & -3 & 5 \end{array}\right] \\ \vec{b}=\left[\begin{array}{c} 48 \\ 36 \end{array}\right], \vec{u}=\left[\begin{array}{c} -17 \\ -16 \\ 0 \\ 0 \end{array}\right] \\ \vec{v}=\left[\begin{array}{c} -8 \\ -28 \\ 0 \\ 12 \end{array}\right] \end{array} $$

Problem 6

Matrices \(A\) and \(B\) are given. Solve the matrix equation \(A X=B\). $$ A=\left[\begin{array}{cc} -4 & 1 \\ -1 & -2 \end{array}\right] $$ $$ B=\left[\begin{array}{ccc} -2 & -10 & 19 \\ 13 & 2 & -2 \end{array}\right] $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks