Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 36

A matrix \(A\) and a vector \(\vec{x}\) are given. Find the product \(A \vec{x}\). $$ A=\left[\begin{array}{ccc} 2 & 0 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2 \end{array}\right], \quad \vec{x}=\left[\begin{array}{l} 1 \\ 4 \\ 2 \end{array}\right] $$

Problem 37

A matrix \(A\) and a vector \(\vec{x}\) are given. Find the product \(A \vec{x}\). $$ A=\left[\begin{array}{ccc} -2 & 0 & 3 \\ 1 & 1 & -2 \\ 4 & 2 & -1 \end{array}\right], \quad \vec{x}=\left[\begin{array}{l} 4 \\ 3 \\ 1 \end{array}\right] $$

Problem 38

A matrix \(A\) and a vector \(\vec{x}\) are given. Find the product \(A \vec{x}\). $$ A=\left[\begin{array}{cc} 2 & -1 \\ 4 & 3 \end{array}\right], \quad \vec{x}=\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right] $$

Problem 39

A matrix \(A\) and a vector \(\vec{x}\) are given. Find the product \(A \vec{x}\). $$ A=\left[\begin{array}{lll} 1 & 2 & 3 \\ 1 & 0 & 2 \\ 2 & 3 & 1 \end{array}\right], \quad \vec{x}=\left[\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right] $$

Problem 40

Let \(A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] .\) Find \(A^{2}\) and \(A^{3}\).

Problem 41

Let \(A=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right] .\) Find \(A^{2}\) and \(A^{3}\).

Problem 42

Let \(A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right] .\) Find \(A^{2}\) and \(A^{3} .\)

Problem 43

Let \(A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] .\) Find \(A^{2}\) and \(A^{3}\).

Problem 44

Let \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] .\) Find \(A^{2}\) and \(A^{3}\).

Problem 45

In the text we state that \((A+B)^{2} \neq\) \(A^{2}+2 A B+B^{2} .\) We investigate that claim here. (a) Let \(A=\left[\begin{array}{cc}5 & 3 \\ -3 & -2\end{array}\right]\) and let \(B=\) $$ \left[\begin{array}{cc} -5 & -5 \\ -2 & 1 \end{array}\right] . \text { Compute } A+B $$ (b) Find \((A+B)^{2}\) by using your answer from (a). (c) Compute \(A^{2}+2 A B+B^{2}\). (d) Are the results from (a) and (b) the same? (e) Carefully expand the expression \((A+B)^{2}=(A+B)(A+B)\) and show why this is not equal to \(A^{2}+2 A B+B^{2}\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks