Problem 22
A matrix \(A\) and vector \(\vec{b}\) are given. (a) Solve the equation \(A \vec{x}=\vec{O}\) (b) Solve the equation \(A \vec{x}=\vec{b}\). In each of the above, be sure to write your answer in vector format. Also, when possible, give 2 particular solutions to each equation. $$ \begin{array}{l} A=\left[\begin{array}{ccccc} 3 & 0 & -2 & -4 & 5 \\ 2 & 3 & 2 & 0 & 2 \\ -5 & 0 & 4 & 0 & 5 \end{array}\right], \\ \vec{b}=\left[\begin{array}{c} -1 \\ -5 \\ 4 \end{array}\right] \end{array} $$
Problem 23
Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{cc} -1 & 5 \\ 6 & 7 \end{array}\right] \\ B=\left[\begin{array}{cccc} 5 & -3 & -4 & -4 \\ -2 & -5 & -5 & -1 \end{array}\right] \end{array} $$
Problem 23
A matrix \(A\) and vector \(\vec{b}\) are given. (a) Solve the equation \(A \vec{x}=\vec{O}\) (b) Solve the equation \(A \vec{x}=\vec{b}\). In each of the above, be sure to write your answer in vector format. Also, when possible, give 2 particular solutions to each equation. $$ \begin{array}{l} A=\left[\begin{array}{ccccc} -1 & 3 & 1 & -3 & 4 \\ 3 & -3 & -1 & 1 & -4 \\ -2 & 3 & -2 & -3 & 1 \end{array}\right], \\ \vec{b}=\left[\begin{array}{c} 1 \\ 1 \\ -5 \end{array}\right] \end{array} $$
Problem 24
Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 2 & -1 \\ 0 & 0 & -2 \end{array}\right] \\ B=\left[\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & -1 \\ 1 & 0 & 0 \end{array}\right] \end{array} $$
Problem 25
A matrix \(A\) and vector \(\vec{b}\) are given. Solve the equation \(A \vec{x}=\vec{b},\) write the solution in vector format, and sketch the solution as the appropriate line on the Cartesian plane. $$ A=\left[\begin{array}{cc} 2 & 4 \\ -1 & -2 \end{array}\right], \vec{b}=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] $$
Problem 25
Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 2 & -1 \\ 0 & 0 & -2 \end{array}\right] \\ B=\left[\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & -1 \\ 1 & 0 & 0 \end{array}\right] \end{array} $$
Problem 26
A matrix \(A\) and vector \(\vec{b}\) are given. Solve the equation \(A \vec{x}=\vec{b},\) write the solution in vector format, and sketch the solution as the appropriate line on the Cartesian plane. $$ A=\left[\begin{array}{cc} 2 & 4 \\ -1 & -2 \end{array}\right], \vec{b}=\left[\begin{array}{c} -6 \\ 3 \end{array}\right] $$
Problem 26
Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{ccc} -4 & 3 & 3 \\ -5 & -1 & -5 \\ -5 & 0 & -1 \end{array}\right] \\ B=\left[\begin{array}{ccc} 0 & 5 & 0 \\ -5 & -4 & 3 \\ 5 & -4 & 3 \end{array}\right] \end{array} $$
Problem 27
A matrix \(A\) and vector \(\vec{b}\) are given. Solve the equation \(A \vec{x}=\vec{b},\) write the solution in vector format, and sketch the solution as the appropriate line on the Cartesian plane. $$ A=\left[\begin{array}{cc} 2 & -5 \\ -4 & -10 \end{array}\right], \vec{b}=\left[\begin{array}{l} 1 \\ 2 \end{array}\right] $$
Problem 27
Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{ccc} -4 & -1 & 3 \\ 2 & -3 & 5 \\ 1 & 5 & 3 \end{array}\right] \\ B=\left[\begin{array}{ccc} -2 & 4 & 3 \\ -1 & 1 & -1 \\ 4 & 0 & 2 \end{array}\right] \end{array} $$