Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 22

A matrix \(A\) and vector \(\vec{b}\) are given. (a) Solve the equation \(A \vec{x}=\vec{O}\) (b) Solve the equation \(A \vec{x}=\vec{b}\). In each of the above, be sure to write your answer in vector format. Also, when possible, give 2 particular solutions to each equation. $$ \begin{array}{l} A=\left[\begin{array}{ccccc} 3 & 0 & -2 & -4 & 5 \\ 2 & 3 & 2 & 0 & 2 \\ -5 & 0 & 4 & 0 & 5 \end{array}\right], \\ \vec{b}=\left[\begin{array}{c} -1 \\ -5 \\ 4 \end{array}\right] \end{array} $$

Problem 23

Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{cc} -1 & 5 \\ 6 & 7 \end{array}\right] \\ B=\left[\begin{array}{cccc} 5 & -3 & -4 & -4 \\ -2 & -5 & -5 & -1 \end{array}\right] \end{array} $$

Problem 23

A matrix \(A\) and vector \(\vec{b}\) are given. (a) Solve the equation \(A \vec{x}=\vec{O}\) (b) Solve the equation \(A \vec{x}=\vec{b}\). In each of the above, be sure to write your answer in vector format. Also, when possible, give 2 particular solutions to each equation. $$ \begin{array}{l} A=\left[\begin{array}{ccccc} -1 & 3 & 1 & -3 & 4 \\ 3 & -3 & -1 & 1 & -4 \\ -2 & 3 & -2 & -3 & 1 \end{array}\right], \\ \vec{b}=\left[\begin{array}{c} 1 \\ 1 \\ -5 \end{array}\right] \end{array} $$

Problem 24

Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 2 & -1 \\ 0 & 0 & -2 \end{array}\right] \\ B=\left[\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & -1 \\ 1 & 0 & 0 \end{array}\right] \end{array} $$

Problem 25

A matrix \(A\) and vector \(\vec{b}\) are given. Solve the equation \(A \vec{x}=\vec{b},\) write the solution in vector format, and sketch the solution as the appropriate line on the Cartesian plane. $$ A=\left[\begin{array}{cc} 2 & 4 \\ -1 & -2 \end{array}\right], \vec{b}=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] $$

Problem 25

Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 2 & -1 \\ 0 & 0 & -2 \end{array}\right] \\ B=\left[\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & -1 \\ 1 & 0 & 0 \end{array}\right] \end{array} $$

Problem 26

A matrix \(A\) and vector \(\vec{b}\) are given. Solve the equation \(A \vec{x}=\vec{b},\) write the solution in vector format, and sketch the solution as the appropriate line on the Cartesian plane. $$ A=\left[\begin{array}{cc} 2 & 4 \\ -1 & -2 \end{array}\right], \vec{b}=\left[\begin{array}{c} -6 \\ 3 \end{array}\right] $$

Problem 26

Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{ccc} -4 & 3 & 3 \\ -5 & -1 & -5 \\ -5 & 0 & -1 \end{array}\right] \\ B=\left[\begin{array}{ccc} 0 & 5 & 0 \\ -5 & -4 & 3 \\ 5 & -4 & 3 \end{array}\right] \end{array} $$

Problem 27

A matrix \(A\) and vector \(\vec{b}\) are given. Solve the equation \(A \vec{x}=\vec{b},\) write the solution in vector format, and sketch the solution as the appropriate line on the Cartesian plane. $$ A=\left[\begin{array}{cc} 2 & -5 \\ -4 & -10 \end{array}\right], \vec{b}=\left[\begin{array}{l} 1 \\ 2 \end{array}\right] $$

Problem 27

Matrices \(A\) and \(B\) are defined. (a) Give the dimensions of \(A\) and \(B\). If the dimensions properly match, give the dimensions of \(A B\) and \(B A\). (b) Find the products \(A B\) and \(B A\), if possible. $$ \begin{array}{l} A=\left[\begin{array}{ccc} -4 & -1 & 3 \\ 2 & -3 & 5 \\ 1 & 5 & 3 \end{array}\right] \\ B=\left[\begin{array}{ccc} -2 & 4 & 3 \\ -1 & 1 & -1 \\ 4 & 0 & 2 \end{array}\right] \end{array} $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks